• Title/Summary/Keyword: MiFish primer

Search Result 13, Processing Time 0.019 seconds

Application of Environmental DNA for Monitoring of Freshwater Fish in Korea (환경유전자의 국내 담수어류 모니터링 적용 연구)

  • Kim, Jeong-Hui;Jo, Hyunbin;Chang, Min-Ho;Woo, Seung-Hyun;Cho, Youngho;Yoon, Ju-Duk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • In this study, to discuss on the applicability of eDNA as a new method to investigate fish diversity at streams, we applied eDNA at 4 streams (Geum River, Ji Stream, Hwangji Stream, Seomjin River), where endangered species are inhabits, with conventional survey (cast net and kick net). The average (±standard deviation) number of species investigated by eDNA were 19 species (±4.4), and it was relatively higher than average of conventional survey, 10 species (±4.8). Most of case, in this study, eDNA was more efficient than conventional survey. However, there were errors on species identification of Korean endemic species and aliied species from eDNA, and it seems the universal primer (MiFish primer set) is not suitable for them. Furthermore, some of endangered species, caught by conventional method, was not detected by eDNA. As the present universal primer is not suitable for identify the every freshwater fish species in Korea, the complementing or development of universal primer is needed, and the eDNA application after species specific marker development for detecting specific species like endangered species should be considered. In conclusion, if the manual for field survey method by eDNA is developed, we expect applicability enlargement for water ecosystem survey.

Identification of Nocardia seriolae by polymerase chain reaction (PCR에 의한 Nocardia seriolae의 검출)

  • Park, Myoung-Ae;Cho, Mi-Young;Kim, Myoung-Sug;Kim, Jae-Hoon;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.22 no.1
    • /
    • pp.85-90
    • /
    • 2009
  • A method for the identification of Nocardia seriolae, the causative agent of nocardiosis in cultured fishes, using PCR was developed in the study. A PCR primer set specific to N. seriolae was designed based on 16S-23S rRNA sequence of various Nocardia species accessed in GenBank. Designed PCR primer set, Nseri-F (5'-GCA AAC TCT TCG AAC AGT CG-3') and Nseri-R (5'-GGA TAT CAG GAC TTA CCG GC-3'), amplifies the target regions of N. seriolae only, but not 4 other Nocardia species, N. asteroides, N. crassostreae, N. farcinica and N. salmonicida.

Optimization of a Diagnostic DNA Chip for Fish Rhabdovirus

  • Kim Young Ju;Kang Ji Hee;Kim Su Mi;Park Soo Il;Kim Sang Bong;Lee Myung Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • A DNA chip that rapidly and accurately detects the viral genes in rhabdovirus-infected fish was developed. The N, Ml, and G proteins of three rhabdovirus strains, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), and flounder rhabdovirus (HIRRV), were selected for use as probes. The sequences of the corresponding genes were obtained, and probes were prepared by PCR using specific primer sets. The specificity of the probes was confirmed by cross PCR. The prepared probes were spotted on poly-L-lysine- or aminosilane-coated glass slides and hybridized with target DNA under several different conditions in order to determine the optimal hybridization temperature, glass-slide coating, and target cDNA concentration.

Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique - From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do - (환경DNA 기술을 이용한 국내 담수어류종 탐지 가능성 - 경기도 민물고기생태학습관 중심으로 -)

  • Kim, Gawoo;Song, Youngkeun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study focused on verifying the identification of freshwater fish species in Korea using Environmental DNA (eDNA) technique. The research of DNA is increasing in the field of ecology, since this is more sensitive of identify rather than traditional investigation method. Which is difficult to detect species hidden in water and be easily influenced by diverse factors (sites, bad weather, researchers and so on). We applied the pilot test in aquarium (Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do), where freshwater fish species are inhabits. We conducted to sampling and analyzing the sixteen water samples (50 species from 7 orders and 13 families) using MiFish primer set. The results showed that 45 species (90%) was investigated by eDNA. It highlight that eDNA with universal primer is possible to detect freshwater fish species of Korean. However, the errors on species identification seems to be caused by the primer that be not suited perfectly and the pollution such as aquarium, sampling collectors.

Identification of differentially expressed genes in the developmental stages from olive flounder Paralichthys olivaceus using an annealing control primer system

  • Kim, Young-Ok;Park, Eun-Mi;Nam, Bo-Hye;Kong, Hee-Jeong;Kim, Woo-Jin;Noh, Jae-Koo;Lee, Sang-Jun;Kim, Kyung-Kil
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • We employed a new and improved differential display reverse transcription-polymerase chain reaction (DDRT-PCR) method, which involves annealing control primers (ACPs), to identify the genes that are specifically or prominently expressed in olive flounder (Paralichthys olivaceus) juveniles (35 days post-hatch; dph) compared to larval-stage (dph 21) flounder. Using 60 ACPs, we identified eight differentially expressed genes (DEGs) and basic local alignment search tool (BLAST) searches revealed eight known genes. Gene expression levels were confirmed by RT-PCR. Phosphoglucose isomerase (PGI) was highly expressed at 21 dph, while nephrosin, myosin light chain (MLC), myosin heavy chain (MHC), carboxypeptidase A, chymotrypsin B, fish-egg protein, and matrix protein were expressed at 35 dph. PGI, MLC, and MHC expression was further analyzed by RT-PCR. The differentially expressed genes identified in this study may provide insights into the molecular basis of development in olive flounder.

Development of the Duplex PCR Method of Identifying Trachurus japonicus and Trachurus novaezelandiae (다중 PCR 분석법을 이용한 전갱이속 어종의 신속한 종판별 분석법 개발)

  • Park, Yeon Jung;Lee, Mi Nan;Kim, Eun Mi;Noh, Eun Soo;Noh, Jae Koo;Park, Jung Youn;Kang, Jung-Ha
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1062-1067
    • /
    • 2018
  • Reliable labeling of fish products can reassure consumers regarding the identity and quality of seafoods. Therefore, techniques that can identify adulteration or mislabeling are valuable. To rapidly identify two Trachurus species, Trachurus japonicus and Trachurus novaezelandiae, a highly efficient, rapid, duplex polymerase chain reaction (PCR) having two species-specific primers simultaneously was identified. This species-specific primer focused on a single nucleotide mismatch in the 3'-terminal base of a primer designed in the mitochondrial cytochrome c oxidase (COI) subunit I DNA. To optimize the duplex PCR condition, gradient PCR reactions were conducted to determine the primer annealing temperature and the primer concentration. The PCR's product was observed on the gel, suggesting that DNA molecules may be useful in differentiating the two species. The length of the amplification fragments were 103 bp for Trachurus japonicus and 214 bp for Trachurus novaezelandiae, which, along with the species-specific primer visualized by agarose gel electrophoresis, enabled accurate distinction of the species of the Trachurus genus. These results indicate that the duplex PCR, which has a species-specific primer based on single nucleotide polymorphism (SNP), can be useful for rapidly differentiating the two species of Trachurus. This duplex PCR analysis is simple, rapid, and reliable, and could be beneficial to protecting consumers' rights.

Mass Mortality Caused by Nocardial Infection in Cultured Snakehead, Channa arga in Korea (Norcardia 감염증에 의한 양식 가물치의 대량 폐사)

  • Park, Myoung-Ae;Lee, Deok-Chan;Cho, Mi-Young;Choi, Hee-Jung;Kim, Jin-Woo
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • A new disease causing mass mortality of farmed snakehead (Channa arga) has emerged in Korea over the summer of 2005. The affected fish showed no specific external signs with the exception of a distended abdomen and hemorrhaging around the anus. After opening the abdomen, the visceral organs, liver, spleen and kidney, present numerous white nodular structures. Histopathological examination revealed these nodules to be evidence of granulomas in the visceral organs. A Gram-positive, filamentous bacterium was isolated from all of the affected fish. Development of primers for a genus-specific peR assay for Nocardia, following analysis of the sequences of the complete 16S rRNA genes from Nocardia spp. and non-Nocardia bacterial genes, allowed identification of the causative organism as Nocardia. This is the first report of a nocardial infection of fish in Korea.

Loop-mediated Isothermal Amplification (LAMP) for Detection of Streptococcus parauberis (Loop-mediated isothermal amplification (LAMP)법을 이용한 Streptococcus parauberis 의 신속 진단)

  • Moon, Kyung-Mi;Kim, Dong-Hwi;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.428-436
    • /
    • 2014
  • Loop-mediated isothermal amplification (LAMP) technique relies on autocycling strand displacement DNA sysnthesis without template denaturation steps under isothermal conditions. LAMP has more advantages than modern PCR, as it requires only basic laboratory equipment like an isothermal water bath, oven, and heating cabinet. Hence, in this study, five random primers were designed with Streptococcus parauberis, shikimate kinase Arok gene sequences (Genbank accession number: CP0024711). Two primers were selected based on the ladder pattern. Other optimum reaction conditions like temperature, time, and sensitivity were established and confirmed with conventional SYBR-green PCR. Results confirmed that the designed random primers were species specific, without any non-target DNA amplification under isothermal conditions. Hence, this study suggests that LAMP techniques could be used in the diagnosis of fish pathogen, specifically S. parauberis.

Identification of eleven species of the Pleuronectidae family using DNA-based techniques

  • Eun-Mi Kim;Mi Nan Lee;Chun-Mae Dong;Eun Soo Noh;Young-Ok Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.678-688
    • /
    • 2023
  • Flatfish are one of the largest families in the order Pleuronectiformes and are economically important edible marine fish species. However, they have similar morphological characteristics leading to challenges in classifying correctly, which may result in mislabeling and illegal sales, such as fraudulent labeling of processed food. Therefore, accurate identification is important to ensure the quality and safety of domestic markets in Korea. Species-specific primers were prepared from the mainly consumed eleven species of the order Pleuronectiformes. To rapidly identify the 11 flatfish species, a highly efficient, rapid, multiplex polymerase chain reaction (PCR) with species-specific primers was developed. Species-specific primer sets were designed for the mitochondrial DNA cytochrome c oxidase subunit I gene. Species-specific multiplex PCR (MSS-PCR) either specifically amplified a PCR product of a unique size or failed. This MSS-PCR analysis is easy to perform and yields reliable results in less time than the previous Sanger sequencing methods. This technique could be a powerful tool for the identification of the 11 species b the family Pleuronectidae and can contribute to the prevention of falsified labeling and protection of consumer rights.

Rapid Diagnosis of Iridovirus Infection by Polymerase Chain Reaction (Polymerase Chain Reaction(PCR)을 이용한 Iridovirus의 검색)

  • Cha, Seung-Ju;Do, Jeong-Wan;Kim, Hyun-Ju;Cho, Wha-Ja;Mun, Chang-Hoon;Park, Jeong-Min;Park, Myoung-Ae;Kim, Su-Mi;Sohn, Sang-Gyu;Bang, Jong-Deuk;Park, Jeong-Woo
    • Journal of fish pathology
    • /
    • v.11 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • For rapid detection of iridovirus infection, a PCR-based diagnostic method was developed. The genomic DNA from mortality-associated iridovirus was cloned into pUC19 vector. The nucleotide sequences of these clones were compared with sequences of other genes from EMBL/GenBank databank. Based on the nucleotide sequences, PCR primers were prepared and used for PCR. The DNA amplification did not occur from the normal fish cells. In contrast, DNA was amplified from the iridovirus-infected fish cells and purified iridovirus. These results suggest that mortality-associated iridovirus can be detected from virus-infected cells within short time and this PCR-based diagnostic system provides a simple and accurate method for detecting the presence of iridovirus infection.

  • PDF