• 제목/요약/키워드: Metropolis-Hastings sampler

검색결과 14건 처리시간 0.024초

Hierarchical Bayesian Inference of Binomial Data with Nonresponse

  • Han, Geunshik;Nandram, Balgobin
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.45-61
    • /
    • 2002
  • We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Bayesian Inference for Switching Mean Models with ARMA Errors

  • Son, Young Sook;Kim, Seong W.;Cho, Sinsup
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.981-996
    • /
    • 2003
  • Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.

The Exponentiated Weibull-Geometric Distribution: Properties and Estimations

  • Chung, Younshik;Kang, Yongbeen
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.147-160
    • /
    • 2014
  • In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

부적합률의 다중변화점분석을 위한 베이지안절차 (Bayesian Procedure for the Multiple Change Point Analysis of Fraction Nonconforming)

  • 김경숙;김희정;박정수;손영숙
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.319-324
    • /
    • 2006
  • In this paper, we propose Bayesian procedure for the multiple change points analysis in a sequence of fractions nonconforming. We first compute the Bayes factor for detecting the existence of no change, a single change or multiple changes. The Gibbs sampler with the Metropolis-Hastings subchain is run to estimate parameters of the change point model, once the number of change points is identified. Finally, we apply the results developed in this paper to both a real and simulated data.

  • PDF

A Hierarchical Bayesian Model for Survey Data with Nonresponse

  • Han, Geunshik
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.435-451
    • /
    • 2001
  • We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.

  • PDF

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
    • Communications for Statistical Applications and Methods
    • /
    • 제11권2호
    • /
    • pp.381-397
    • /
    • 2004
  • The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.

보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교 (Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data)

  • 이은희;황범석
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.131-146
    • /
    • 2022
  • 로지스틱 회귀 모형은 다양한 분야에서 범주형 종속 변수를 예측하거나 분류하기 위한 모형으로 많이 사용되고 있다. 로지스틱 회귀 모형에 대한 전통적인 베이지안 추론 기법으로 메트로폴리스-헤이스팅스 알고리즘이 많이 사용되었지만, 수렴의 속도가 느리고 제안 분포에 대한 적절성을 보장하기 어렵다. 따라서, 본 논문에서는 모형에 대한 베이지안 추론 방법으로 Frühwirth-Schnatter와 Frühwirth (2007)에서 제안된 보조 혼합 샘플링(auxiliary mixture sampling) 기법을 사용하였다. 이 방법은 모형의 선형성과 정규성을 만족시키기 위해 두 단계에 거쳐 잠재변수를 도입하며, 결과적으로 깁스 샘플링을 통한 추론을 가능하게 한다. 제안한 모형의 효과를 검증하기 위해 2020년 지역사회 건강조사 당뇨병 자료에 적용하여 메트로폴리스-헤이스팅스를 사용한 모형과 추론 결과를 비교 분석하였다. 또한, 다양한 분류 모형들과 본 논문에서 제안한 모형의 분류 성능을 비교한 결과 제안된 모형이 분류 분석에서도 좋은 성능을 보이는 것을 확인할 수 있었다.