We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.
Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.981-996
/
2003
Bayesian inference is considered for switching mean models with the ARMA errors. We use noninformative improper priors or uniform priors. The fractional Bayes factor of O'Hagan (1995) is used as the Bayesian tool for detecting the existence of a single change or multiple changes and the usual Bayes factor is used for identifying the orders of the ARMA error. Once the model is fully identified, the Gibbs sampler with the Metropolis-Hastings subchains is constructed to estimate parameters. Finally, we perform a simulation study to support theoretical results.
Communications for Statistical Applications and Methods
/
제21권2호
/
pp.147-160
/
2014
In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.
Communications for Statistical Applications and Methods
/
제24권3호
/
pp.227-240
/
2017
In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.
Communications for Statistical Applications and Methods
/
제11권1호
/
pp.79-91
/
2004
In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.
In this paper, we propose Bayesian procedure for the multiple change points analysis in a sequence of fractions nonconforming. We first compute the Bayes factor for detecting the existence of no change, a single change or multiple changes. The Gibbs sampler with the Metropolis-Hastings subchain is run to estimate parameters of the change point model, once the number of change points is identified. Finally, we apply the results developed in this paper to both a real and simulated data.
We describe a hierarchical bayesian model to analyze multinomial nonignorable nonresponse data. Using a Dirichlet and beta prior to model the cell probabilities, We develop a complete hierarchical bayesian analysis for multinomial proportions without making any algebraic approximation. Inference is sampling based and Markove chain Monte Carlo methods are used to perform the computations. We apply our method to the dta on body mass index(BMI) and show the model works reasonably well.
Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
Communications for Statistical Applications and Methods
/
제11권2호
/
pp.381-397
/
2004
The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.
로지스틱 회귀 모형은 다양한 분야에서 범주형 종속 변수를 예측하거나 분류하기 위한 모형으로 많이 사용되고 있다. 로지스틱 회귀 모형에 대한 전통적인 베이지안 추론 기법으로 메트로폴리스-헤이스팅스 알고리즘이 많이 사용되었지만, 수렴의 속도가 느리고 제안 분포에 대한 적절성을 보장하기 어렵다. 따라서, 본 논문에서는 모형에 대한 베이지안 추론 방법으로 Frühwirth-Schnatter와 Frühwirth (2007)에서 제안된 보조 혼합 샘플링(auxiliary mixture sampling) 기법을 사용하였다. 이 방법은 모형의 선형성과 정규성을 만족시키기 위해 두 단계에 거쳐 잠재변수를 도입하며, 결과적으로 깁스 샘플링을 통한 추론을 가능하게 한다. 제안한 모형의 효과를 검증하기 위해 2020년 지역사회 건강조사 당뇨병 자료에 적용하여 메트로폴리스-헤이스팅스를 사용한 모형과 추론 결과를 비교 분석하였다. 또한, 다양한 분류 모형들과 본 논문에서 제안한 모형의 분류 성능을 비교한 결과 제안된 모형이 분류 분석에서도 좋은 성능을 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.