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DEFAULT BAYESIAN INFERENCE OF REGRESSION
MODELS WITH ARMA ERRORS UNDER EXACT FULL
LIKELIHOODS!

YOUNG SOOK SON!

ABSTRACT

Under the assumption of default priors, such as noninformative priors,
Bayesian model determination and parameter estimation of regression mod-
els with stationary and invertible ARMA errors are developed under ex-
act full likelihoods. The default Bayes factors, the fractional Bayes factor
(FBF) of O’'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF)
of Berger and Pericchi (1996a), are used as tools for the selection of the
Bayesian model. Bayesian estimates are obtained by running the Metropolis-
Hastings subchain in the Gibbs sampler. Finally, the results of numerical
studies, designed to check the performance of the theoretical results dis-
cussed here, are presented.
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1. INTRODUCTION

Strong autocorrelations are often seen in most residual analyses, which are
performed following regression analyses of time series data. These phenomena
require model structures incorporating autocorrelations of time series data. Re-
gression models with ARMA errors can be considered as one alternative. Classical
analyses of ARMA models are mainly based on asymptotic results. However, the
Bayesian approach does not place any theoretical restriction on the sample size.
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The focus of this paper is confined to the Bayesian inference of the regression
model, My , ., with the stationary and invertible ARMA(p, g) error as follows:

k

Mk,p,q : yt=/30+25i$ti+5t, t=1527"'an7 (11)
=1

where ®,(B)e; = O4(B)a;, ®p(B) =1—¢1B— ¢poB? — -+ — $pBP, O4(B) =
1-6,B—0;B%>— ... — 6,B7, B is a backshift operator and {a;} is a sequence of
N (0, 0?) white noises. In this model, 8y, 1, ..., Bk, 02, ¢, = (¢1,¢2,...,¢p) and
0, = (61,62,...,0,) are all unknown parameters. For the stationarity-invertibility
of the ARMA(p, q) errors, (¢,,8,) should be restricted to the region, C}, x Cj,
where

CpxCy = {(¢p,0q) 1 ®,(z) =0, |z| > 1 and B4(y) =0, |y| > 1} .

In particular, the model (1.1) with 8; = 0, ¢ = 1,2,...,k, is refereed to as a
stationary and invertible ARMA process.

Monahan (1983) gave a fully Bayesian analysis of the stationary and invertible
ARMA models under the uniform prior over C, x C, for (¢p, 8,) and the standard
normal-inverse gamma conjugate prior for Sy and 2. However, the numerical
integration required in the inference was done using a fixed quadrature rule only
forp+qg<2.

To carry out a fully Bayesian analysis of stationary and invertible ARMA
models, Marriott et al. (1995) developed the concept of sampling based infer-
ence, based on Markov Chain Monte Carlo (MCMC) methods, such as Gibbs
sampling and the Metropolis-Hastings algorithm under full likelihood, by intro-
ducing the unobserved history of time series data as latent variables. The priors
that were used consisted of a multivariate normal prior for the latent variables,
noninformative improper priors for Sy and o2, and the uniform prior over Eu-
clidean (p + g) space for partial autocorrelations transformed from (¢,,8,) over
Cp x Cy. Because of the obscurity in the interpretation of the Bayes factor, due to
the use of improper priors, the Bayes factor was not used for the determination
of the models, but rather this was done by comparing the predictive performance
of competing models. In addition, the problems of missing observations, outlier
detection, and prediction are dealt with.

Chib and Greenberg (1994) developed the Bayesian estimation of the same re-
gression models with stationary and invertible ARMA errors, as defined in (1.1).
They expressed the conditional likelihood in termms of a number of pre-sample
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variables that was smaller than the number of latent variables used in the study
by Marriott et al. (1995). They assumed multivariate normal priors for a vector
of regression parameters and a vector of pre-sample variables, an inverse gamma
prior for 02, and nonstandard proper priors for ¢, and 8,. The estimation tech-
nique that was used consisted of the Gibbs sampling and the Metropolis-Hastings
algorithms. They also showed that the proposed Gibbs sampler converges to the
true density.

Varshavsky (1996) used the arithmetic intrinsic Bayes factor (AIBF) of Berger
and Pericchi (1996a) under exact full likelihoods, in order to identify regression
models with AR errors. She assumed the uniform prior for ¢, over its stationary
region, Cj,, noninformative improper priors for 02 and a vector of regression
parameters. Also, the integral over C,, which is required for the calculation of
the AIBF, was computed by the Monte Carlo method after being transformed
into partial autocorrelations over (—1,1)? from ¢, over Cj.

Son (1999) discussed the identification of a stationary and invertible ARMA
model using the usual Bayes factor under the exact full likelihood, and priors of
the kind described in Marriott et al. (1995).

In this paper, we discuss the use of a fully Bayesian inference, in order to se-
lect the most appropriate model for a given set of data among competing models,
regression models with stationary and invertible ARMA(p, g) errors, and to esti-
mate all of the parameters included in the selected model. Our priors are based
on the vagueness of information. Thus, we assume such default priors as nonin-
formative improper priors for a vector of regression parameters and o2, and the
uniform prior over Cp x Cy for (¢,.0,). The tools that we use for the Bayesian
model determination are the default Bayes factors, the fractional Bayes factor
(FBF) of O’Hagan (1995) and the arithmetic intrinsic Bayes factor (AIBF) of
Berger and Pericchi (1996a). Bayesian estimation is performed using the Gibbs
sampling and the Metropolis-Hastings subchain in the Gibbs sampler. Practically
speaking, in computing the default Bayes factors for the identification of the mod-
els, or in applying the MCMC method for the estimation of the parameters, we
used vectors of the partial autocorrelations over (—1,1)P*? reparameterized from
(¢,.8,) over Cy, x Cy.

Here, we considerably extend the work of Varshavsky (1996) or Son (1999).
Also. we apply a different methodology from theirs to the same regression models
with stationary and invertible ARMA errors that Chib and Greenberg (1994)
dealt with. Specifically, we use the fully exact likelihood function. expressed only

in terms of real data. without introducing latent variables or pre-sample variables
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for the unobserved history of the time series data, as described in Marriott et al.
(1995) or Chib and Greenberg (1994), which was rendered possible by Leeuw
(1994), who presented the covariance matrix of ARMA errors in a closed form.

The contents of this paper are as follows. In Section 2, we describe the exact
full likelihood function and our priors assumptions. In Section 3, the posterior
probability is computed for each competing model, via the FBF and the AIBF.
In Section 4, we provide the results of the full conditional posterior distributions,
which are to be used when running the Gibbs sampler for the purpose of estimat-
ing the parameters. Finally, numerical studies designed to check the performance
of the theoretical results discussed in this paper are provided.

2. Exact LIKELIHOOD FUNCTION AND PRIORS ASSUMPTIONS

For a sample of size n, the model described in (1.1) can be expressed in the
form of a vector given by

Mipg + Y = Xk + ¢,

where Y = (y1,%2,-.-,9n)’s Bx = (Bo, B1,---, k), € = (€1,€2,...,en) and X =
(®1 k> Toky - - -1 &nk) i an n X (k + 1) matrix with w;’k = (1,241, %12, - -, Ttk)
for t =1,2,...,n. Since {y; — a’;,kﬂk} = {&;} follows a stationary and invertible
ARMA(p, q) process, E(Y) = X8 and Cov(Y) = 02V, where V4 is an
n X n matrix composed of only ¢, and 8,.

Thus, the exact full likelihood function is explicitly given by

_n 1,1
F(Y1Br,0, by 8g) = (2m0™) 72 |Vl
1 o1
x exp{ = 55 (¥ = XeB)' V(Y = XiBy) |, (2.1)
where the specification of V (11 and |Vp 4| in Leeuw (1994) is rewritten in Ap-

pendix.
Now, we make vague assumptions on priors as follows. For a real line, R,

N (B, 0) x o T B, e R*! 0 <o < o0, r>0. (2.2)

The usual selection of r is r = 0 (the reference prior of Berger and Bernardo
(1992)) or r = k + 1 (the Jeffreys’ prior).

_ ICpqu(¢p=0q)
~ Volume(C, x C,)

(. 04)
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where

1, if (¢,,8,) €CpxCy,

0, otherwise.

ICpqu (¢p7 0(1) = {

Also, assuming that (8y,0) and (¢,, 8,) are independent, we set

”TN(ﬁkv a, ¢ps oq) = WN(inv G) 'W(¢p, oq) (23)

The superscript N, which appears in the form of notations throughout this paper,
refers to the use of noninformative improper priors.

3. MoDpEL DETERMINATION UsING THE FBF anND THE AIBF

Consider the problem of selecting one appropriate model, which generates a
set of time series data, {y1,v2,3,...,¥Yn}, among competing models,

!
Mipg + ye =2y 1By + et t=1,2,...,n,

where k € Ipeg = {ki; + = 1,2,...}, p€ Ing = {pi; 1 = 1,2,...}, ¢ € Ina =
{g;; i=1,2,...}, and all the elements of each set, IReg, Iar oOr Ina, are nonnega-
tive integers. In particular, we let K = max; {k;}, P = max,; {p;}, @ = max; {¢;}.

At the first step of Bayesian inference, prior distributions are required for all
of the parameters in the models. In the beginning of a Bayesian experiment, in
the absence of any prior information on the parameters, default priors, such as
noninformative priors, can be used. The Bayes factor or the posterior probability
of the hypothesis or model can be used as tools for Bayesian testing or Bayesian
model selection. The Bayes factor depends on prior distributions. However, be-
cause of the arbitrary constant incorporated into it, the usual Bayes factor cannot
be used directly, in spite of their objectivity and simplicity, if default priors, most
of which are typically improper, are assumed. On the other hand, the fractional
Bayes factor (FBF) of O’Hagan (1995) and the intrinsic Bayes factor (IBF) of
Berger and Perrichi (1996a), which are classified as ‘default’ or ‘automatic’ Bayes
factors, are free from the arbitrariness of noninformative improper priors (Berger
and Mortera, 1999).

Now, for use in the computation of the FBFs and the AIBFs later on. we
define two functions of a given data. Y and a constant b. 0 < 5 < 1 under the
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model My, 4. as follows

o
N Y N
= 0
7nk.p,q( lb) /(:‘pqu/O /Rk+17r (Bk307¢p7 (1)

b
x{F(Y1B1,0. 0y, 8) } 4By dor d(b,.6,)
and .
m k,p,q(Ylb)
MVt (V15)
To integrate over B, and o in the computation of mkN, g Y'|b) is straightfor-
ward, if the kernel of multivariate normal density and that of inverse gamma

N
B (k,p7q)(k’,p’,q')(Y|b) =

density are used, respectively. However, to integrate over (d)p,Gq) is not ex-
plicit. For the Bayesian inference of a stationary and invertible ARMA process
to be valid, C; x Cy must be identified, since (¢,,8,) is restricted to the region,
Cp x Cy. However, Cy, x C; becomes very complicated for p,q > 2. To circumvent
the difficulty in identifying C, x C; with high order p and ¢, there is a useful
reparameterization, which is described in the literature. Following the work of
Barndorff-Nielsen and Schou (1973), Monahan (1984) and Jones (1987), there is
a one to one transformation between (¢,, 8,) and the partial autocorrelations,
(Vp»74)» that maps Cp x Cy to (-1, 1)(P+9)_ Its applications are shown in Marriott
et al. (1995), Varshavsky (1996), and Son (1999).
After integrating over B, and o, we can set

(Y = XiB) Vs (Y = XkBy) = | X4V i Xe| - (X, Y)YV, (X, V),
where By, , = (X;V;1X,)"1X,V; 1Y, using the fact (Shilov, 1961) that
|A'A|Y2 (T - PA)B|| = |(4, B)'(A, 15;)|1/2 with P4 = A(A’A)"'A’. Finally,
transforming from (¢, 8,) to (v,,7,) results in

me,p,q(Y|b)

27T {(bn + 71—k —1)/2}
- W%(bn—k—l)b%(bn-i—r)

/ ‘V* | IXI V* IX I (bTL+7‘ k—2)
X
(~L1)pto |(Xk,Y)'V*,,,},(Xk,Y)l-“’"*T k=D

(3.1)

F(¥pvg) Vi)

where V7 is an n x n matrix with (¢,,0,) in V, ; replaced by (7v,.7,) and

s =11 ([ +) I ([57]+)
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with B, (a1, @) being a rescaled beta density of a random variable -y; defined
on (—1,1) with parameters a; and a.

The idea behind the IBF is to use minimal training samples to convert the
improper prior to the proper posterior density. The minimal training sample
refers to a part of the full sample, with the minimal sample size required to
guarantee 0 < mﬁp7q(Y|b = 1) < oo for all (k.p,q). Since the prior of (¢,.0,)
has a finite support, the minimal training sample is of size K + 2, as in the
case of a regression model with independent random errors (Berger and Per-
icchi, 1996b). Our minimal training sampling scheme must also be planned
to preserve the continuity of time. So, under the model M, ,,, one set of
possible minimal training samples is {Y({),! = 1,2,...,n — K — 1}, where
Y () = {y, Yi+1,---,Yi+Kk+1} is a sample of size K + 2 with corresponding design
matrix Xi(l) = (15, Ti41k,--- - T+ x+1,k) such that all (X%(Z)V;;(I)Xk(l))
are nonsingular, where Cov(Y (1)) = 072V, 4(1).

The idea behind the FBF is to use a fraction, b, of each likelihood function to
change a noninformative improper prior into a proper prior. Thus, the definition

of the FBF yields the FBF of M , , to My g as

FBF _ pN _ N
B(k,p,q)(k’yp’»q’) - B(k,p,q)(k@p’,q’)(ylb =1) B(k’wp’,q’)(k,p»q)(yw)‘ (3.2)

O’Hagan (1995) proposed a common and simple method of setting a fraction b as
b = mg/n, with mg being the minimal training sample size. See O’'Hagan (1995)
for the other use of b.

Berger and Perrichi (1996a) proposed an arithmetic IBF (AIBF), which uses
an arithmetic mean of B(]Z,Vp,,q,)(k’p#)(Y(l)M =1),1l=12....n—-K -1 to
prevent the IBF from depending on only one minimal training sample. Now.

AIBF of

since the model Mg p ¢ is an encompassing model, the AIBF, B(k_pq)(k,p,‘q,)

My p.q t0 My o can be defined as

n—K—-1 npN .
BAIBF _ BN (Y|b= 1)21:1 B(k’.p’,q')(K,P,Q)(Y(Z)lb =1)
(kp.g)(K'phg') — Z(kp,a) (K p'g) - n—K—1 pN Y()p=1)
=1 (k’p‘(l)(l\i[)’Q)( (b= 1)

where 7n}Xp’q(Y(l)|b = 1) included in the equation B(.;(.)(Y(Z)lb = 1) is given by
replacing n, Xy. Y, V; in m;::p‘q(Y|b = 1) of (3.1) with K + 2. X, (I). Y(I).
V5.q(1). respectively. and V7 (1) is obtained from V', ,(1).

Finally, the posterior probability of inodel My, , via the default Bayes factor
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* is given by

—1
e
P(MyplY) = ( IIEDINDD k_pq Bkt ,pq>> - (33)

k'€IReg P'EIAR ¢ €M

where * denotes FBF or AIBF and dxp 4 is the prior probability of the model
Mj, p 4 being true. The model to be selected for an observed time series data, Y,
is the model that gives the largest posterior probability, P(M ,4|Y") for all the
combinations of k, p and gq.

4. PARAMETER ESTIMATION BY GIBBS SAMPLING

From the joint posterior density which is obtained by combining the prior
density (2.3) and the exact likelihood function (2.1), the full conditional distribu-
tions of By, 02, (¥p»7), which are used for constructing the Gibbs sampler, are
obtained as follows:

IBk | 0277p77q7Xk7Y ~ Nk(ﬁk,p,q ’ UQ(X;CV*;,}]X]C)_l)

where

Brpqg= (XL Vo X)X VLY

(n+r)

-1
02 | :Bka7p’7q7Xk7Y ~ IG( ) 2{(Y_Xkﬂk)IV* 1(Y Xk,Bk)} )7

P(’Ypa’Yq I ﬂk?UQan"Y) & h’(’Yp,’Yq)a

where
A exp{ LY - KB VY - xkﬂu}f(fypnq).

Generating 3, or o2 from the conditional posterior distribution of 8, or o2,
respectively, is straightforward. However, the conditional posterior distribution
of (7,,7,) is not standard, so we use the following Metropolis-Hastings algorithm:

Given the initial values ('yéo),‘ygo)). repeat from (i) to (iv) for j =1,2.....J.

(i) Generate v, and v, independently and randomly from (=1.1)?P and (—1.,1)9.
respectively.

(3. 72}) } |
)

(i) Compute ¢ = min {1. )
h( pj ’7(/
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(iii) Generate U randomly from (0. 1).

- () () (- 7g)- it U<e,
v Set y Y = - o
(iv) (’Yp q ) {(,Yéj 1).751_/ 1,)‘ FU>ec

(7p»774) which is finally estimated is again transformed to (¢, 8,).

5. NUMERICAL STUDY

To check the performance of the theoretical results discussed in this paper, we
conducted a numerical study with three simulated data sets and one set of real
data. The generated data and all the results of Bayesian inference were obtained
using MATLAB (The Math Works Inc., 2000). Three time series data sets of
sample size n = 100 were generated from the following models, and are shown in
Figure 5.1. Normal random variates are generated by the NORMRND function
of MATLAB.

(1) Linear trend model with AR(3) errors:
yr = 193.8 + 3.5¢ + ¢,
et = —0.6e4_1 + 0.67e;_o + 0.36¢,_3 + as, a; ~ iid N(0,1?).

(it) Curve trend model with MA(4) errors:
ye = 35.3 + 1.5t + 2.8t% + ¢4,
€ = ay + 1.6a;_1 + 0.5a;_o — 0.4a;_3 — 0.2a;_4, a; ~ iid N(0,0.52).

(ii1) Linear trend model with ARMA(2,2) errors:
yy = 10.6 + 0.5t + ¢,
g = —1.4dep 1 — 0.56;_9 + a; — 0.8a;_1 + 0.6a;_2, a; ~ iid N(0,1.5%).

When applying the methodology introduced in this paper, it secems to take a
—1
]
the core of the computations involves dealing with p x p, ¢ x ¢. or at most

lot of time to compute a n X n matrix. V (1] and its determinant, |V |. However.
q + remainder(n/q) lower band matrices (Appendix).

We set » = 0 as a common choice of r in a prior setting of (2.2). In the
computation of FBF of (3.2), we set b = (K + 2)/n. For the identification of
the model, My, ,, the computation of the integral in (3.1) must be evaluated in
a simple way. We estimate the integral by means of the Monte Carlo method
through 200 importance samples with a joint density of p+q independent uniform
variates distributed over (—1.1) as an importance density. To check the conver-
gence of the Monte Carlo integration. we monitored the results of 100. 200. 300.
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Linear trend model with ARMA(3,0) errors
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FIGURE 5.1 Plots of three simulated time series data

500, 1,000, 2,000, 3,000, 5,000 and 10,000 importance samplings. As a result, it
was determined that 200 importance samplings were sufficient to get stability.
Table 5.1 presents the Akaike Information Criterion (AIC) for each model,
My p 4. obtained by means of the the maximum likelihood estimation (MLE),
and posterior probabilities via the FBF and the AIBF. % in the AIC, which was
obtained using PROC ARIMA of SAS (SAS Institute Inc., 2000), denotes that
the estimation algorithm may not converge and the results of the estimation are
unstable, and ** denotes that the estimation algorithm did not converge. The
competing models are My, , for k € Ireg = {1,2,3}, p € Inr = {0,1,...,5},
g € Iya = {0,1,...,5}. All of the posterior probabilities are almost zero for
the remainders in all of the competing models, except for the true trend model.
Therefore, we don’t present these results, because of space limitations. 1t takes
about 9 minutes in the case where 200 importance samplings are used for the
identification of the models for one data set. For the AR(3) error model, FBF,
AIBF, and AIC all select a true model. For the MA(4) error model, FBF and
AIBF select a true model, but many of the results obtained using the AIC are
unstable. For the ARMA(2,2) error model, both AIBF and AIC select a true
model. but FBF selects a more complex model, the ARMA(3,3) model. AIC
imposes a penalty when more complex models are selected. Equal prior proba-
bilities for all the models are assumed for the sake of the simplicity in computing
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TABLE 5.1 AIC and posterior probabilities via the FBF and the AIBF for the model My 5 q

linear trend (k=1)

AR(3) error

curve trend (k=2)

MA(4) error

linear trend (k=1)
ARMA(2,2) error

(p,q) || FBF | AIBF | AIC || FBF | AIBF | AIC || FBF | AIBF | AIC
(0,0) || 0.0000 | 0.0000 | 457 0.0000 | 0.0000 | 269 0.0000 | 0.0000 | 774
(0,1) || 0.0000 | 0.0000 | 399 0.0000 | 0.0000 | 189* || 0.0000 | 0.0000 | 661*
(0,2) || 0.0000 | 0.0000 | 338 0.0011 | 0.0008 | 150* || 0.0000 | 0.0000 | 598*
0,3) 1l 0.0000 | 0.0000 | 326 0.2599 | 0.2258 | 142* || 0.0000 | 0.0000 | 554*
(0,4) || 0.0000 | 0.0000 | 310 0.7374 | 0.6464 | 252* || 0.0000 | 0.0000 | 416*
(0,5) 1| 0.0006 | 0.0001 | 299 0.0000 | 0.0000 | 354* || 0.0000 | 0.0000 | 523*
(1,0) || 0.0000 | 0.0000 | 302 0.0000 | 0.0000 | 254* || 0.0000 | 0.0000 | 522
(1,1) || 0.0000 | 0.0000 | 461* [{ 0.0000 | 0.0000 | 186* || 0.0000 | 0.0000 | 778*
(1,2) || 0.0000 | 0.0000 | 282 0.0000 | 0.0000 | 188* || 0.0000 | 0.0000 | 379
(1,3) || 0.0000 | 0.0000 | 283 0.0007 | 0.0055 | 125* || 0.0024 | 0.0005 | 622*
(1,4) || 0.0000 | 0.0000 | 280 0.0000 | 0.0002 | 142* || 0.0000 | 0.0000 | 365
(1,5) || 0.0000 | 0.0000 | 282 0.0000 | 0.0000 | 129* || 0.0000 | 0.0000 | 619*
(2,0) || 0.0029 | 0.0027 | 286 0.0000 | 0.0000 | 196* || 0.0000 | 0.0000 | 394
(2,1) || 0.0103 | 0.0021 | 283 0.0000 | 0.0000 | 143 0.0000 | 0.0000 | 377
(2,2) || 0.0000 | 0.0000 | 280 0.0000 | 0.0000 | 135* || 0.1323 | 0.5492 | 361
(3,3) || 0.0000 | 0.0000 | 282 0.0001 | 0.0181 | ** 0.0000 | 0.0000 | 363
(2,4) || 0.0000 | 0.0000 | 282 0.0000 | 0.0001 | 125* || 0.1548 | 0.0684 | 363
(2,5) || 0.0000 | 0.0000 | 284* [} 0.0007 | 0.0697 | 126* || 0.0000 | 0.0000 | 365
(3,0) || 0.8488 | 0.9265 | 278 0.0000 | 0.0000 | 182 0.0000 | 0.0000 | 374
(3,1) || 0.0000 | 0.0000 | 545% || 0.0000 | 0.0000 | 143 0.0000 | 0.0000 | 375*
(3,2) || 0.0023 | 0.0069 | 340* || 0.0000 | 0.0020 | 132* || 0.0000 | 0.0000 | 426*
(3,3) || 0.0000 | 0.0000 | 282* [I 0.0000 | 0.0000 | 146* || 0.7103 | 0.3818 | 363*
(3,4) || 0.0000 | 0.0000 | 284 0.0000 | 0.0007 | 136* [ 0.0000 | 0.0000 | 366*
(3,5) || 0.0000 | 0.0000 | 286 0.0000 | 0.0000 | 140* || 0.0000 | 0.0000 | 427*
(4,0) || 0.0024 | 0.0019 | 279 0.0000 | 0.0000 | 165 0.0000 | 0.0000 | 374
(4,1) || 0.1325 | 0.0596 | 290* || 0.0000 | 0.0000 | 139 0.0000 | 0.0000 | 583*
(4,2) || 0.0011 | 0.0016 | 283 0.0000 | 0.0000 | 133* {| 0.0000 | 0.0000 | 403*
(4,3) |i 0.0000 | 0.0000 | 280* || 0.0001 | 0.0305 | 213* || 0.0000 | 0.0000 | 483*
(4,4) 1| 0.0000 | 0.0000 | 281* || 0.0000 | 0.0000 | 134* || 0.0000 | 0.0000 | 367*
(4,5) || 0.0000 | 0.0000 | 306* || 0.0000 | 0.0000 | 130* || 0.0000 | 0.0000 | 364*
(5,0) i 0.0001 | 0.0000 | 281 0.0000 | 0.0000 | 165 0.0000 | 0.0000 | 372
(5,1) || 0.0000 | 0.0000 | 279* || 0.0000 | 0.0000 | 141 0.0001 | 0.0001 | 370
(5,2) || 0.0000 | 0.0000 | 283* || 0.0000 | 0.0000 | 171* || 0.0000 | 0.0000 | 362
(5,3) || 0.0000 | 0.0000 | 282* || 0.0000 | 0.0001 | 136 0.0000 | 0.0000 | 408*
(5,4) 1} 0.0002 | 0.0001 { 283* || 0.0000 | 0.0000 | 125% )| 0.0000 | 0.0000 | 391*
(5,5) || 0.0000 | 0.0000 | 491* {| 0.0000 | 0.0000 | ** 0.0000 | 0.0000 | 369*
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the posterior probability of equation (3.3). However, the penalty imposed on the
number of parameters can be incorporated into the prior probabilities, in order
to select simpler models (Varshavsky, 1996).

Tables 5.2, 5.3 and 5.4 show the results of the MLE and posterior distribu-
tion for the parameters included in each model. The values in parentheses are
approximate standard errors for the MLE and the numerical standard errors for
the posterior distributions. The multivariate normal variates, inverse gamma
variates, and uniform random variates used in the Gibbs sampler are generated
by the functions of MATLAB, MVNRND, GAMRND, and UNIFRND, respec-
tively. In our numerical study, we estimated the parameters from one sequence
simulated from only one Gibbs sampler, and burned the first 10% after a to-
tal of 110% iterations. The number of iterations of the Gibb sampler and the
Metropolis-Hastings subchain in the first two models is 100 in both cases, for
which it takes almost 20 minutes, and those in the third ARMA(2,2) error model
are 200 and 100, respectively, for which it takes almost 40 minutes. Overall,
the results of the posterior distribution are superior to those of the MLE from
the viewpoint of the standard errors of the estimates. Specifically, in the results
obtained by the MLE for the MA(4) error model, there is strong evidence that
the estimation may not converge.

For the analysis of real data, Korea Population Projection data (in millions),
with a sample size of 41, from 1960 to 2000 is used, and its plot is shown in
Figure 5.2. In Figure 5.3, we present plots of the residuals obtained after fitting
four regression trend models with ARMA(0, 0) errors as follows:

(i) Linear trend model: y; = 1 + Bat + €.
(ii) Curve trend model: y; = 1 + Bat + Bt + &;.
(iii) Third trend model: y; = By + Bot + B3t? + Byt + &4

(iv) Stepwise regression trend model:
yr = (B + Bot + B3t?) - Iy + (By + Bst) - (1 — It) + &1, where I = 1, if t < 24,
I; = 0, otherwise.

In Figure 5.3, the plot (a) of the residuals, obtained after fitting the linear
trend model with iid errors, requires the use of a model incorporating a quadratic
term. Plots. (b) or (c), obtained after fitting the curve trend model or the third
trend model with iid errors, show strong positive autocorrelations and increasing
variances. The stepwise regression trend model is cousidered. because of the
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TABLE 5.2 The linear trend model with AR(8) errors

Posterior Distribution
True MLE Lower Upper

Parameter Mean Std. Median  95% limit  95% lLimit

Bo = 193.8 193.8331 193.6754  0.3918 193.7773 192.9414 194.1381
(0.2334) (0.0391)

Bi= 35 3.4960 3.4965  0.0040 3.4962 3.4886 3.5028
(0.0039) (0.0004)

¢1 = —0.6 —0.6734 —0.6106  0.0742 —0.6142 —0.7754 —0.5082
(0.0963) (0.0074)

92 = 067 0.5809 0.6777  0.0994 0.6937 0.4642 0.8402
(0.1012) (0.0099)

¢3 = 0.36 0.3262 0.3695  0.0699 0.3622 0.2769 0.4786
(0.0995) (0.0069)

ogi= 10 0.8836 0.9234  0.1454 0.9017 0.7123 1.1629
(0.0145)

TABLE 5.3 The curve trend model with MA({) errors

Posterior Distribution
True MLE Lower Upper

Parameter Mean Std. Median  95% limit  95% limit

Bo = 35.3 35.0344 34.8099 0.6308  34.8878 33.3104 35.6158
(0.2565) (0.0630)

Bi= 15 1.5238 1.5242  0.0133 1.5236 1.5048 1.5469
(0.0117) (0.0013)

B2 = 2.8 2.7997 2.7998  0.0000 2.7998 2.7997 2.7999
(0.0001) (0.0000)

6, =-16 —0.3830 —-1.6626  0.1432 —1.6554 ~-1.8908 —1.4178
(20.8508) (0.0143)

6> = —-0.5 0.1628 —0.7014 0.3115 —0.7420 —1.2324 —0.4119
(12.9306) (0.0311)

;= 04 —0.1187 0.2199  0.3006 0.2195 —0.2072 0.5374
(9.5223) (0.0300)

0, = 0.2 0.3353 0.1559  0.0943 0.1510 0.0198 0.2399
(7.0306) (0.0094)

ol= 025 0.6564 0.3263  0.1013 0.3112 0.1937 0.5144
(0.0101)




182 YOUNG SOOK SON

TABLE 5.4 The linear trend model with ARMA(2,2) errors

Posterior Distribution
True MLE Lower Upper
Parameter Mean Std. Median  95% limst  95% lLimit
80 = 10.6 10.5207 10.5144  0.1226  10.5362 10.2780 10.6507
(0.0707) (0.0086)
Z1= 05 0.5022 0.5021 0.0009 0.5021 0.5004 0.5035
(0.0012) (0.0000)
¢ =—14 —1.4576 —1.3021 0.2361 —1.1385 —1.6155 -1.0210
(0.0991) (0.0166)
¢2 =—0.5 —0.5472 —0.4352  0.2089 —0.2908 -0.7027 —0.2096
(0.0984) (0.0147)
6= 08 0.8576 0.7520  0.0515 0.7653 0.6216 0.8022
(0.0909) ‘{| (0.0036)
8, =—-0.6 -0.6410 —0.5452  0.20560 —0.7048 —0.7409 —0.2982
(0.0902) (0.0144)
o= 225 1.9159 2.3967  0.4857 2.3310 1.7553 3.1801
(0.0343)
50 T T T T T i T
asl .. : i - N IR ENTHE Aa . _
aole L e |
g
35 -
ol |
215960 1 9165 1 9‘70 1 9;75 1 9‘80 1 9;85 1 9190 1 9‘95 2000
year

FIGURE 5.2 Korea Population Projection Data (in millions) (Resource : Korea National Statis-
tics Office, http://www.nso.go.kr)

possibilities of the curve trend and the declining linear trend centered at ¢ =
24 (year=1983) in the plot of (a) in Figure 5.3. As another possibility. fitting
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FIGURE 5.3 Residual plots after fitting regression trend models with 1id errors
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(c) Stepwise Model with ARMA(2,0) errors: AIC

FIGURE 5.4 Residual plots after fitting the stepwise regression trend model

the third trend model before ¢ = 24 doesn’t give any significant improvement
compared to the curve. The plot (d) of the residuals, obtained after fitting the
stepwise model with 4id errors, remains strongly autocorrelated. but the variance



184 YOUNG SOOK SON

of the residuals becomes more stable.

The models selected by the FBF, AIBF and AIC, which are shown on the left
side of Table 5.5, are the stepwise regression trend model with AR(2), AR(3),
and AR(2) errors, respectively. The competing models are (i) the linear, (ii) the
curve, (iii) the third, and (iv) the stepwise regression model with ARMA(p, q)
errors, where p,q = 0,1,2,3. For all of these models, except for the stepwise
trend model, only the minimum AIC is presented for all p,q. It takes about 3
minutes to identify the model using 100 importance samplings.

The right side of Table 5.5 presents the results of the estimation for the
selected models. The numbers of iterations in the Gibbs sampler and Metropolis-
Hastings algorithm are both 100, for which it takes about 5 minutes. The com-
puted test statistics are presented in the first line and the p-values are given in
parentheses in the second line of the results of the ¢-test for zero residuals and
Portmanteau x? test to determine whether a sequence of residuals is white noise
or not. The plots of the residuals in (a), (b),(c) of Figure 5.4 are those for the
models selected by the FBF, AIBF and AIC, respectively. The residuals are much
more random than those of the stepwise regression trend model with #id errors.
The entire analysis of the residuals refers to all of the well fitting models. How-
ever, the model selection made by the FBF or AIC is a little better than that of
the AIBF from the viewpoint of the SSR (Sum of Squared Residuals).

6. CONCLUDING REMARKS

We present a fully Bayesian computation procedure for the model selection
and parameter estimation of regression models with stationary and invertible
ARMA errors. Under noninformative priors, the model identification is done by
the posterior probability of each model computed via the AIBF or the FBF, and
the model estimation is implemented by Gibbs sampling.

Our Bayesian procedure is meaningful in that the likelihood function is com-
puted exactly using only observed data, without introducing any data augmen-
tation techniques for unobserved data. We propose that the Bayesian approach
can be used as an alternative, when the maximum likelihood estimation or the
conditional least square estimation is unstable in terms of its convergence.

After performing many simulation experiments, we observed that both our
model selection approach and the AIC often select the same true model, and that
the Bayesian estimates obtained by Gibbs sampling are close to the maximum
likelihood estimates. However, we can not but point out that the order (p,q),
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which is different from the true order of the ARMA error, can be selected, whether

the Bayesian procedure or the AIC is used, since different ARMA(p, q) errors can

be associated with similar values of the likelihood function.

TABLE 5.5 Results of model selection and estimation for Korea Population Projection Data

(p,q) || FBF | AIBF | AIC | | FBF | AIBF | AIC
Linear trend model (k = 2) 51 24.2814 24.3083 24.2481
(p,q) |l all all —-53 (0.0011) (0.0015) (0.0118)
' Z€ro 2€ro 32 0.7705 0.7396 0.7760
Curve trend model (k = 3) (0.0003) (0.0009) (0.0042)
(»,9) all all —-198 53 —0.0051 ~0.0035 —0.0053
Zero zero (0.0000) (0.0000) (0.0001)
Third trend model (k = 4) 34 29.4831 30.1419 29.4563
(p,q) all all —202 {0.0047) (0.0227) (0.0935)
zero Zero 35 0.4333 0.4149 0.43405
Stepwise trend model (k = 5) (0.0001) (0.0006) (0.0029)
(0,0) 0.0000 ] 0.0000 —-118 b1 1.6092 1.7677 1.6613
(0,1) || 0.0000 | 0.0000 | —167* (0.0078) (0.0047) (0.0865)
(0,2) 0.0000 | 0.0000 —198* P2 —-0.8192 —0.8029 -0.8794
(0,3) || 0.0010 | 0.0000 —205 (0.0079) (0.0045) (0.0870)
(1,0) || 0.0000 | 0.0000 | -178 3 ~0.0226
(1,1) || 0.0000 | 0.0000 | —206 (0.0013)
(1,2) 0.0428 | 0.0008 —-215 a? 1.5792e-4 1.6438e-4 1.7402e-4
(1,3) || 0.0000 | 0.0000 | —218 (3.9716e-5) | (3.6662e-5) | (0.0132)
(2,0) || 0.7917 | 0.0395 —232 SSR 0.0058 0.0063 0.0059
(2,1) 0.0164 | 0.0034 —230 t-test for zero residuals
(2,2) || 0.0000 | 0.0000 —235* t 0.0999 0.1992 0.1682
(2,3) |l 0.0010 | 0.0004 | —234* (0.9209) (0.8431) (0.8673)
(3,0) 0.1432 | 0.8360 —230* Portmanteau x° test
(3,1) 0.0013 | 0.0023 —227* lag=6 1.7162 1.3930 2.2226
(3,2) || 0.0024 | 0.1174 | —220* (0.7878) (0.7072) (0.6949)
(3,3) 0.0000 | 0.0000 —161* lag=12 7.8260 8.7570 8.0684
(0.6458) (0.4600) (0.6222)
lag=18 11.7533 11.6486 12.3483
(0.7608) (0.7054) (0.7197)
lag=24 15.4693 16.6076 15.6963
(0.8413) (0.7346) (0.8307)
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APPENDIX

Denoting the covariance matrix of a stationary and invertible ARMA(p, q)
process by o2 V(p.q)» an expression of V(;) q) only ¢, and 8, follows the theorem
by Leeuw (1994). We reconstruct its details for the algorithm in order to be easier

programmed.
For the ARMA(p, q) model,

Viy=G M) {I,- RRR+GV'GW - GOGA ) RIMG, (A1)

where R,x, = M"'GN - H,

1)
Mq><q OqX(n-q)
2) (1) ’ M)
Mo = | M3, (M, 104020) | and Ny, = ot
n—q)xq
(3)
0(n—2q)><q M(n——2q)><(n—q)
with
1 0 0 0 0\
-6, 1 0 0
-0 -6, 1 - 0 0
1
Mt(1><)q= : : SR I
—0,2 —0_3 —0,_4 10
g1 Oz O3 -~y 1)
0y —04-1 —0,-0 -+ —B2 —6;
0 —Oq —9q_1 —93 —92
Mffng 0 0 -0, - —0s~05|
0 0 0 0 -4,
0y =0y ---—6,—6, 1 0 0 ---0
0 —8, --—=63-6, -6, 1 0 ---0

3) _ 0, —0; —B, —0
MY, =0 0 6, —0; —0, —0 1 0

0 0 -+ 0 =0, =0,y -+ —6y 6 1



BAYESIAN INFERENCE OF REGRESSION MODELS 187

and the matrices G and H have the same structure as M and IN with 6; being
replaced by ¢; and order g by p, respectively.
The determinant of V,, , is given by

Vol = [ Tmax(pq) + (GV' G — aPa®) 7 (GH M® — M) gy

xMi'M(GVMP - MOG®@)), (A.2)

where M is ann x p matrix consisting of the first p colums of M™%

When computing V;,}] and |V, 4| using (A.1) and (A.2), respectively, the
orders of submatrices need to be adjusted; if 0 < p < ¢ then make ¢—p imaginary
parameters, ¢pr1 = ¢py2 = -+ = ¢g = 0, and use the order g instead of p in the
specification of GWY and GP. Also, if 0 < g < p then make p — ¢ imaginary
parameters, 8,41 = 0g42 = --- = 0, = 0, and use the order p instead of ¢ in the
specification of MY and M®). To get V;(l) and |V | for a AR(p) model, set
M =1, N =04 MY =1,,,, and M® =0,,,. Toget Vi, and [V
for a MA(q) model, set G = I,,, H = 0,4, Gl = I,xq, and G2 = 0gxq-

Most tedious job in the computation of V [11 and |V, 4| is the computation of
inverse matrix, M ! of an n x n lower band matrix, M. We use the following
algorithm for the computation of M ™! in this paper. Given M, M1, M) n,
P, q,

Step 1. (Initial step)
m = [n/q], d = remainder(n/q).
B, = inv(MW),
By =M® « By,
B3 =M(gx(m—-1)+1:n, gx(m—1)+1:n),
B, = inv(Bj3),
Bs = By(l:q+d, 1:q),
Az = —Bs * By,
j=1

Step 2. (Iterative step)
while (j <m —1),

All - Bl*,
A1z = 0gx(grj+d)s
Az = B,
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B,
Ay = - * By,
Ay
J=7+1
end,

Step 3. (Final step)
M™!' = B,.

This algorithm requires the computation of the inverse of a matrix with at most
the dimension ¢ + remainder(n/q) instead of the inverse of a n x n lower band
matrix.
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