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Hierarchical Bayesian Inference of Binomial Data
with Nonresponse

Geunshik Han' and Balgobin Nandram?

ABSTRACT

We consider the problem of estimating binomial proportions in the pres-
ence of nonignorable nonresponse using the Bayesian selection approach. In-
ference is sampling based and Markov chain Monte Carlo (MCMC) methods
are used to perform the computations. We apply our method to study docter
visits data from the the Korean National Family Income and Expenditure
Survey (NFIES). The ignorable and nonignorable models are compared to
Stasny’s method (1991) by measuring the variability from the Metropolis-
Hastings (MH) sampler. The results show that both models work very well.

Keywords: Beta-binomial model, ignorable nonresponse, latent variable, selection
approach, Metropolis-Hastings sampler.

1. Introduction

The nonresponse rates in many surveys have been increasing steadily (De
Heer 1999, and Groves and Couper 1898), making the nonresponse problem more
important.

For the analysis of survey data with nonresponse, Rubin (1987) and Little
and Rubin (1987) describe two types of models according to the ignorability of
response. In the ignorable nonresponse model the distribution of the variable
of interest for a respondent is the same as the distribution of that variable for a
nonrespondent with the same values of the covariates. In addition, the parameters
in the distributions of the variable and response must be distinct (Rubin, 1976).
All other models are nonignorable.

We consider a hierarchical Bayes model to study nonignorable nonresponse.
Recently there has been much activity in the analysis of survey nonresponse.
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Bradlow and Zaslavsky (1999) estimate item nonresponse in the 1992 DuPont
Corporation customer satisfaction survey data by Bayesian hierarchical latent
variable nonresponse model for ordinal data. Scharfstein, Rotinitzky and Robins
(1999) show how to make inference using semiparametric nonresponse models.
Crawford, Johnson and Laird (1993) used nonresponse models to analyze data
from the Harvard Medical Practice Survey. Stasny, Kadane, and Fritsch (1998)
used a Bayesian hierarchical model for the probabilities of voting guilty or not
guilty on a particular trial given various death-penalty beliefs in which the views
of nonrespondents may differ from those of respondents. Park and Brown (1994)
used a pseudo-Bayesian method (Baker and Laird, 1988) in which prior observa-
tions are assigned to both observed and unobserved cells to estimate the missing
cells of a multi-way categorical table under nonresponse.

Stasny (1991) used a hierarchical Bayesian model to study victimization in the
National Crime Survey and used the selection approach developed primarily to
study sample selection problems (e.g., Heckman 1976, and Olson 1980). A related
method was presented by Albert and Gupta (1985), they made an approximation
to obtain a Bayesian approach for a single area, see also (Kaufman and King,
1973).

Since Bayesian approach can incorporate prior information about nonrespon-
dents, the Bayesian method is appropriate for the analysis of nonignorable non-
response problems (Little and Rubin 1987, and Rubin 1987). However the main
difficulty is how to describe the relationship between the respondents and nonre-
spondents. Using the selection approach within the framework of Bayes empirical
Bayes ( Deely and Lindley, 1981), Stasny (1991) estimated the hyper-parameters
by maximum likelihood methods and assumed them as known. But we assume
that the parameter for nonresponses is differnt from that of respondents and
estimate hyperparameters by random priors.

The rest of the paper is organized as follows. In Section 2 we briefly illustrate
the NFIES data and nonresponse problems. In Section 3 we describe the hier-
archical Bayesian model for ignorable and nonignorable nonresponses and also
computational procedures. In Section 4 we show how to obtain variance esti-
mates and an empirical analysis to assess the performance of our model. Finally,
Section 5 has concluding remarks.
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2. National Family Income and Expenditure Survey

The National Family Income and Expenditure Survey (NFIES) has been con-
ducted every five year since 1991 by the National Statistical Office to measure
an aspect of income and expenditure structure of Korean household (National
Survey of Family Income and Expenditure Vol. 2). For this survey, a preliminary
survey was conducted in 1989 for urban area and in 1990 for rural area. The data
used in this paper was collected between October 1996 and December 1996.

The NFIES frame is a stratified two-stage sample design of probability pro-
portional to measure of size of population. The first stage is for the selection of
primary sampling units (Enumemeration Districts : ED), and second stage for
selection of segments. All households in each selected segment are the sampling
unit of the survey at the initial interview, and each household is received account
books to record the receipts and disbursements. The survey data was collected
by using family account books which were distributed to each sample households
prior to the survey so that income source, type of expenditure and their value
could be recorded daily. At the final interview, the information about status of
households, yearly income, savings & liabilities and durable goods were obtained
upon interview and recorded on the questionnaires by the enumerators.

One of the variables of interest in the NFIES is doctor visits (at least one
doctor visit during the past year or no visits) of households.

The NFIES nonresponses are refusals (to protect privacy), noncontacts. They
may arise nonrandomly. For example, households of the wealthy neighborhood
gave low response, and therefore, nonresponse from this source can be considered
nonrandom nonresponses.

The average NFIES response rate was about 80%. The nonresponses of sam-
ple households were imputed assuming the distribution of the respondents and
nonrespondents are the same within the same imputation class. The order of
hierarchical imputation classes were area, household type and household size.
However this hierarchical imputation method may be unreliable, thus there is
a need to consider the adjustment by a method other than random hierarchical
imputation. The Bayesian method is discussed as a possible alternative to im-
pute the NFIES nonresponses. For each area in Table 1 n, r, and y denote the
number of sampled households, the number of households who completed daily
account books and the number of households who visited doctor at least once
respectively.
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3. Hierarchical Bayes Models

In this section we describe the hierarchical Bayes model for nonresponse. This
model is a standard beta-binomial model for ignorable nonresponse. Let

o — 1, household j in area i visited doctor at least once
" 0, household j in area 7 did not visit doctor

and
~_} 1, household j in area ¢ is a respondent
Yis = 0, household j in area i is not a respondent,
t=1,...,¢, 7=1,...,n;. We use a probabilistic structure to model the z;; and
Yij-

3.1. Ignorable versus nonignorable model

For the ignorable nonresponse, we take

zi; | ps “d Bernoulli (p:)

Yij | ™ “d Bernoulli (m;)

jid
pi | p11, 711 ~ Beta (p11711, (1 — p11)711) (3.1)
i ‘
m; | p12, T2 ~ Beta (u1a712, (1 — p12)712) (3.2)

i=1,...,0=1,...,n.
Assumptions (3.1) and (3.2) express similarity among the areas.
For the nonignorable nonresponse, we have
Tij | pi % Bernoulli (pi)
Yij | Tij = 8 — 1,y “ Bernoulli (mis), s=1,2

iid )
pi | w21, 721 ¥ Beta (uo17mo1, (1 — p21)721) (3.3)

jid
Tis | B2,541, T2,5+1 ~ Beta (ug s1172,511, (1 — p2,s41)T2,541), §=1,2.  (3.4)

Like assumptions (3.1) and (3.2), (3.3) and (3.4) express similarity among the
areas.

Stasny did not work with the reparameterized beta distribution that we are
using here. For the nonignorable nonresponse model she set a = poy79, b =
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(1—pa1)721, ao = pooma2, Bo = (1—p22) 22, 01 = poates, B1 = (1—pa3)73. There
two advantages in working with this reparameterization : (a) the u, are all in
(0, 1) and this helps to get around the issue of impropriety (b) the parameters
pas and 795 are roughly orthogonal. Both (a) and (b) improve the computations.

While Stasny assumed that the hyperparameters a, b, a; and s, are fixed
but unknown, we take

rs ~ Beta (D 79, (1 - ufP)rD)

rs T‘S ?

Trs ~ = ( 1('2)71/1(‘(5)))7

where for the ignorable model r = 1, s = 1,2 and for nonignorable model r =
2, s = 1,2,3. In our case the parameters pﬁ‘?, TT‘S), 7]7('5) and uﬁg) are to be
specified.

Ignorable model specifies a complete Bayesian model in which the probability
that a household respond does not depend on its doctor visit whereas nonignor-
able model has this specification. Thus, in ignorable model, but not in nonignor-
able model, the missing data are missing at random and the missing data are not
used for inference about the p;. In this sense our first model is ignorable.

Let r; be the number of responded households and y; the number of visits
in area 3. Then r; and y; are random variables, n; — r; is the number of nonre-
sponded households. Since the number of visits for the nonresponded households
is unknown, we denote it by the latent variable z;, and the number of non visits
is n, —r;— 2.

For ignorable model the likelihooc function is

14
pp,m | y,r) o []{p¥' (1 = po) i ¥mpi(1 — m)™ "}
and using Bayes’ theorem the joint posterior density of all the parameters is

f(pym,p11, 111, 12,712 | ¥, 1)

I3
x H{pfi(l— i)Y (L — )T
i=

pfllnl—l(l __pi)(l—yu)-ru—l 71_;{!127'12—1(1 _ Wi)(l—uu))ﬁz—l }

B(piimi, (1 — p11)m) B(p12712, (1 — p12)712)

2
(0)_(0) (0)y,.(0) 0y __
H By Tis 1 1- -1 n
X {lﬁ;s te 1’"/1'13)( ~His )T 15 eXp(_Vgs)Tls) )

s=1
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where B(u,v) = I'(u)I'(v)/T'(u + v) is the beta function.
For nonignorable model the likelihood function is

p(paﬂ.laﬂ'%z | yvr)
I3
n; :
o« I ' (mi2ps)*
i=1 Yi,Ti — Yiy 24, T — Ti — 24
X (min (1= pa))" 7 (1 = mi)ps)* (1 — min) (1 — i)™ 7777}
and using Bayes’ theorem the joint posterior density of all the parameters s
f(p, 71, 72, 2, pio1, To1, 22, T22, 1423, T23 | ¥, T)

¢
x H { < ni; ; ) (migpi)¥ (i1 (1 — pi))" ¥ ((1 — mig)pi) ™
i=1 :

p217a1—1lo1 _  y(1—po1)T21—1
—ri. D} (1 —p)

(1 = 71 ) (1 — p; ))Mi—Ti—2i £1

(( a)(1=pi)) B(ua17a1, (1 — pa1)721)

I3_I 7rltzs’rzs 1(1 _ ﬂ.is)(l—llZs)TZs“l
B(pasTas, (1 — pas)2s)

(0)_(0)

Hag T 1 1)@y _nfP -1
T {00 st

exp(-1f) )}

Inference about p;, m;; and 7o is required, and all information about these
parameters is contained in this posterior density which is complex. We develope
the conditional densities used in the Gibbs sampling algorithm. Gibbs sampling
is a MCMC technique. The transitional density of this Markov chain is the
product of several conditional densities. The stationary distribution of the chain
is the posterior density that we desire. We list the conditional densities for the

followings.

3.2. Computations

For ignorable model it is convenient to represent the joint posterior density

function as

f(p, ™1, pa1, 711, 12, T12 | Y, T)
= fl(P | y,l‘,u11,'f11)f2(ﬂ'1 | Y I‘,M127712)f3(l£11,T11,,u12,7'12 l Y,r),
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where fi(-) and fa(-) are respectively the densities of p and 7y which have the
following distributions

ind .
pi | yirripi, T~ Beta(yi + puimin, i — i+ (- pu)m), i=1,...,¢

ind .
i | yi i, 12, T2~ Beta (r; + piamie,ni — i + (1 — p12)2), i=1,...,¢

and

fa(pi1, 71, a2, T2 | ¥, T)

¢
H {B(yi +pium, ri—yi + (1 — p1)7m)
paiey B(p1mi, (1= pa1)m)
B(ri + pamiz,ni — i + (1 — p12)712)
B(p12712, (1 — p12)712)

}P(#ll,ﬁhmz,ﬁz)

with p(p11, 711, #12, T12) the joint prior distribution. For nonignorable model it is
convenient to represent the joint posterior density function as

f(pa771,71'2,Z,,u21,T21,M22,722,/$23,T23 | y,r)

3
= fl(p | y7r7z7/1'217721) {H fs(ﬂ's | yarazuu"ZS)TZ.s)}

s=2

X fa(pa1, To1, 22, T22, 423,723, % | ¥, T),

where f1(-), f2(-) and f3(-) are respectively the densities of p,7; and,mws which
have the following distributions

» '
Di | Yir s, 2iy o1, To1 ~ Beta(zi+yitpoimor, ni—zi—Yi+(1—pa)m1), i=1,...,¢
- _
7| Ui, iy 20y o2, Toz ~ Beta(ri—yi+poaton, ni—ri—zi+(1—poz)me2), i=1,...,¢
ind .
Tig | YirTi, 2iy 23, To3 '~ Beta(y; + pasmes, zi + (1 — po3)mas), i=1,...,¢
and

fa(par, To1, Bo2, 722, 423,723, 2 | ¥, T)

¢
n; —r; \ Blzi+yi + parme1, ni — 2z — yi + (1 — po1)721)
2 B(pa1721, (1 — p21)721)

x
i=1
y B(ri — yi + poamag, i — 15 — 2 + (1 — p22)122)
B(ua2, T22)
y B(yi + po3tes, zi + (1 — p23)7e3)
B(pgs7es, (1 — pa3)723)

}p(,um, To1, K22, T225 1423, T23),
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where p(ua1, 721, 22, To2, 1423, To3) 1s the joint prior distribution. Thus, random
samples from p;, m;; and w2 can be easily obtained. However, the conditional
densities of pso1, o1, 22, 722, ti23, and 7oz are not easily defined, so we use to
sample these parameters. (see Appendix 1).

The MH algorithm of Nandram (1998) requires some dexterity to obtain tun-
ing constants.

We have used trace plots, autocorrelations, and a maintenance of good jump-
ing probabilities to assess convergence. We draw 5,500 iterates, threw out the
first 500 and took every fifth. However, this is very conservative because conver-
gence is very rapid. For our computation, first we set the hyper-parameters uﬁ‘?
and TT(S) equal 0. Then we ran our MH algorithm to obtain posterior samples of
Trs. 10 ensure propriety of the posterior we estimate 7752)7 1/8), ngg), ygg), ﬂ§2)7
1/:(2?), nég), Vég) , nég) and Vég). Finally, we ran our algorithm with these proper
priors, and we found virtually no change in the posterior distributions of the p;.

4. Comparison of Variance Estimates

We compare our approach with that of Stasny. We note here that she did not
obtain posterior standard deviations of the proportions. Within her framework,
we show how to obtain reasonable estimates of the posterior standard estimates,
and we compare them with the corresponding estimates from our method. We
perform these activities by using data on the NFIES.

We present the data for the 24 areas in Table 1 where y; is the number of
doctor visits in area 7, r; is the number of responded households and n; is the
number of households sampled. The observed doctor visit rate is p; = y;/r; and
the response rate is ;=r;/n;.

4.1. Approximating the variance

Stasny used the standard beta priors with the hyperparameters a = p2172,
= (1—p21) 721, @0 = p22722, Bo = (1—p22) T2, a1 = p237e3 and By = (1—p23) 723
being fixed but unknown.

We consider a simple procedure to approximate the posterior standard devi-
ations of the proportions. This is a good idea if it turns out to be similar to the
ones obtained by using the MCMC sampler.

Let g; denote one of p;, m;; and 7, D = (r,y) and © = (a,b, ag, Bo, a1, b1)-
Also let (¢, ¢1) denote one of (a,b), (a9, fo) and (a1, B1), and (o, (;31) be reason-
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TABLE 1. National family income and ezpenditure survey dato

Naive Estimator

Area i n; — 7 7t Di
areal 1127 692 147 551
area2 1004 474 .793 .553
area3 686 238 .840 547
aread 891 420 .784 .584
areab 723 131 911 .540
areab 665 324 778 .585
area? 797 337 800 .590
area8 357 147 798 .616
area9 352 42 .938 .557
areal0 175 29 .920 .524
areall 343 130 .812 .609
areal? 133 44 .841 571
areal3 280 79 .860 579
areald 137 49 .838 .539
arealb 349 92 .864 .598
areal6 77 29 .826 .558
areal? 284 35 .934 .569
areal8 117 12 .948 534
areal9 301 65 .886 .595
area20 180 33 .807 .563
area2l 531 132 .876 .570
area2? 169 34 .903 531
area23 169 42 .879 .556
area24 63 27 789 .624

NOTE : The sample size from each area is n;, ri and yi are the numbers of responded households
and doctor visits respectively; B; = yi/r: and #; = ri/n; are the observed proportions of doctor
visits and responded households.
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able estimates (e.g., posterior modes or means of maximum likelihood or method
of moments estimation) of (¢g, ¢1). Let (ci, djr) denote one of (¢ + y;,n;) for p;,
(ri — yi,n; —y; — t) for m; and (y;,y; +¢) for mpe, ¢t =0,1,...,n; —r;. We
also let Q be an estimator (e.g., posterior mean, mode or maximum likelihood
estimator).

We approximate the posterior distribution of z; as follows. 21, 29,...,2; are
iid. Fort=0,1,...,n; — 1y,
P(z; =t |D) = @i
where w; = &,/ Y 0"t @F and
Wy = {B(yi+t+&, i —t —yi +b)B(ri — yi + &, ni — i — t + fo)
X B(yi+d1,t+,él)} +B(t+1, n; —7T; —t+1)

t=0,1,...,ni—'r,-, 1= 1,...,8.
First, consider E(q; | D). It is true that

Cit + ¢Pp
E(gi | D,z =1,9Q) = #K = it
1

Then

ni—T;

E(g; | D)~ Y Gufar = i,
t=0
. cit + J)o

where fi;; =

dit + ¢o + b1 N .
Second, we consider var(g; | D). We use the conditional variance formula,

var(q; | D) = E{var(q; | D,2,Q)} + var{E(q; | D,2,Q)},
where z = (21,...,2¢). Now

E{va‘r((h | D7Z’Q)} = E{ﬂ'lt(l - ,Ufit)/(dit + ¢0 + ¢1 + 1) | D,Z = taQ}

n;—r;

D @aftie(l = fae) /(i + o + 1 +1).
t=0

Q

It is more difficult to obtain an approximation for var{E(g; | D,z = t,Q)}.
Letting u(t, Q) = (cit + ¢o)/(dit + ¢o + #1) we have
var(u(z,Q) | D) = E{var(u(z,Q)|D,z)} + var{E(u(z, Q) | D,z)}
~ var{u(f;,Q) | D,z = t} + var{u(z, Q| D},
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TABLE 2. Comparison of the posterior means and standard deviations for ignorable model
based on the national family income and ezpenditure survey deta

Stasny Estimates New Estimates
Area pi  std(pi) m std(m;) pi  std(pi) m std(m;)
areal .553 .011 .749 .008 .552 .011 .749 .008
area? .555 .011 794 .008 .555 .011 794 .008
area3 .550 .014 .840 .010 .550 .013 .841 .009
aread .582 .012 .786 010 .582 .012 .785 .009
areab .542 .013 .909 .008 .543 .013 .909 .007
areab .584 .014 .780 .011 .583 .014 .780 .011
area7  .588 .013 .802 .009 .588 .013 .801 .010
area8 .605 .019 .801 015 .604 .018 .800 .014
area9 .5569 .019 .933 .010 .560 .017 .933 .010
arealld .539 .024 .914 .014 .540 .022 .914 .014
areall .H99 .019 .814 .015 .600 .018 815 .014
areal2 .569 .027 .842 .021 .570 .024 .843 .021
areal3 .576 .020 .860 014 .576 .019 .859 .014
areald .552 .027 .840 .020 .552 .024 .840 .020
areald .591 .019 .864 .013 691 .018 .863 .013
areal6 .563 .032 .831 .027 .564 .027 .831 .026
areal7 .569 .020 .929 011 .569 .019 .929 011
areal8 .549 .028 .935 .016 .550 .025 .935 .015
areal9 .588 .019 .884 .013 .587 .019 .884 .013
area20 .565 .023 .902 015 .565 022 .901 .015
area2l .569 .016 875 .010 .569 .015 .875 .010
area22 .545 .025 .898 .016 .545 .022 .898 .015
area23 .561 .024 .876 .017 .561 .022 .876 .017
area24 .591 .035 .805 .032 .588 .029 .804 .031

where t is an estimator of z. We take

>

It is now left to approximate var{u(¢;,{2) | D,z = t)}. We defer this issue to
Appendix 2.

4.2. Numerical Comparisons

In Table 2 and 3 we compare the posterior means and standard deviations
obtained from our methods and the Stasny method. The estimates we employ
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TABLE 3. Comparison of the posterior means and standerd de-
viations for nonignorable model based on the national family income and expenditure survey data

Stasny Estimates New Estimates
Area i i1 i2 pi i1 iz

areal  .531 (.009) .715 (.012)  .779 (.011 (.011)
area?  .539 (.010) .767 (.013)  .818 (.011 (
area3 541 (.012) 824 (.014)  .855 (.012)  .542 (.012) .834 (.014) .858 (.012)
aread  .554 ((011) .735 (.015)  .827 (.011)  .563 (.011) .767 (.015) .821 (.012)
(.0 ( (
(
(

) 539 (.010) .746 (.013) .781

)
)
)

areab  .540 (.012) .904 (.011)  .913 (.010)  .539 (.012) .904 (.011) .917 (.010)

)
)
)
)

543 (.010) .787 (.013) .820 (.011)

area7  .561 (.012) .753 (.016)  .840 (.012)  .569 (.011) .781 (.015) .835 (.012)
area8 571 (.016) .739 (.024)  .846 (.017)  .581 (.016) .772 (.023) .838 (.017)
area 553 (.016) .924 (.015)  .936 (.012)  .553 (.016) .925 (.015) .938 (.012)
areal0 .536 (.020) .911 (.020)  .911 (.019)  .535 (.020) .908 (.021) .916 (.018)
areall 572 (.016) .761 (.024)  .854 (.017)  .578 (.016) .788 (.023) .848 (.017)
areal2 554 (.021) .817 (.032)  .862 (.025)  .555 (.021) .828 (.031) .862 (.025)
areald .560 (.017) .833 (.023)  .878 (.017)  .562 (.017) .844 (.022) .878 (.017)
areald 541 (.021) .827 (.029)  .851 (.026)  .542 (.020) .834 (.028) .855 (.025)
areal5 .572 (.016) .829 (.021)  .887 (.015)  .574 (.016) .842 (.020) .885 (.015)
areal6 549 (.023) .811 (.039)  .848 (.032)  .550 (.023) .819 (.038) .850 (.032)
areal? .560 (.017) .918 (.017)  .933 (.014)  .560 (.017) .918 (.017) .935 (.013)
areal8 544 (.022) .928 (.023)  .930 (.020)  .543 (.022) .925 (.023) .934 (.020)
areal9 572 (.017) .857 (.022)  .901 (.016)  .573 (.017) .865 (.021) .901 (.015)
area20 .554 (.020) .887 (.024)  .908 (.019)  .554 (.020) .889 (.023) .910 (.019)
area2l 558 (.014) .855 (.016)  .890 (.012)  .559 (.014) .863 (.015) .891 (.012)
area2? .539 (.020) .892 (.023)  .900 (.020)  .539 (.020) .892 (.022) .903 (.020)
area23 .550 (.020) .860 (.026)  .886 (.021)  .550 (.020) .865 (.025) .888 (.021)
area2d 563 (024) .757 (.049)  .841 (.035)  .565 (.024) .774 (.047) .839 (.035)

)

area6  .555 (.012) 731 (.017)  .820 (.013)  .564 (.012) .762 (.017) .816 (.013)
)
)

NOTE : Standard deviation estimates are shown in parentheses.
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in the approximation are the posterior means from the MCMC method. For
ignorable model the estimates are ¢y = 129.6, Bo = 103.6, & = 14.6, ,31 = 2.7.
For nonignorable model g = 144.5, By = 120.9, &1 = 19.2, B; = 4.2, &y = 24.6,
32 = 3.9, and the posterior means of z1,..., 294 are 346, 236, 119, 209, 65, 161,
168, 74, 21, 14, 65, 22, 39, 24, 46, 14, 17, 6, 32, 16, 66, 17, 21, 13.

First, consider Table 2 in which we present the posterior means and standard
deviations of the p; and 7; for the ignorable model. Corresponding estimates from
the two methods are essentially the same for all areas. However, the standard
deviations of our estimates are the same or slightly smaller than those from the
Stasny method.

Second, consider Table 3 in which we present the posterior means and stan-
dard deviations of the p;, m;; and w5 for the nonignorable model. Here, giils,
the estimated proportions of doctor’s visit, are the same eventhough areas 1, 4,
6, and 8 have some differences between two methods, where the differences are
within the standard deviations. However the standard deviations in all areas
are the same for both methods. For the response rate 31, the new estimates
are higher than those from the Stasny method, and the standard deviations of
the new estimates are the same or slightly smaller than those from the Stasny
method. Finally, for the response rate 7, both estimates are almost the same
up to two decimal places and the standard deviations are also the same for all
areas. "

For the comparison of the corresponding p;’s between the ignorable and non-
ignorable models, the nonignorable model estimates are lower than those from
the ignorable model.

As a conclusion, the results of our points estimates for p; are the same as the
Stasny method, yet the standard deviations are the same or slightly smaller than
the Stasny.

5. Concluding Remarks

We have studied the nonignorable nonresponse for the estimation of a propor-
tion. We extended the method of Stasny (1991) to take care of the variablilty in
the hyper-parameters by using a Bayesian method facilitated by the MH sampler.
We also explored the Stasny approach in a second direction ; approximate analyt-
ical expressions for the variance of the proportions are obtained by incorporating
the variation of the hyperparameters. This works well for both ignorable and
nonignorable nonresponse models as we illustrated for the NFIES data.
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Appendix 1
Metropolis-Hastings Samplers for Ignorable and Nonignorable models

For ignorable model (u11,711) and (u12,712) are independent aposteriori with

.

B(yi + p1ui7i1, Ti —yi+(1—M11)T11)}
, T Ir) X , T

p(p11, 711 |y, ) P(Mll 11)1'I=I1{ B(#uTu,(l—uu)Tn)

(A.1)

and

p(12 712 | 7.7) o pliina, Tia) ﬁ {B('f'i +g12¢12, n; — i + (1 — p12)712) }
pale (k12712 (1 — p12)712)

(A.2)

where p(p11,711) and p(pi2,712) are the prior distributions. Samples can be

obtained from each of (A.1) and (A.2) by using the algorithm of Nandram (1998).

For nonignorable model it is convenient to condition on z to obtain
p(u21, 721 | 2,y,1)

x P(/i21,T21)H

=1

{B(Zi +yi+pamn, ni— 2 —yi+ (1 — #21)’/’21)} (A.3)
B(pa17a1, (1 — po1)721)

-

P(.U22,T22 | z,y,r)

o< p(paz, T22) H

1=1

{B(Tz‘ — i + poomao, s — 1 — 2z + (1 — H22)722)} (A.4)
B(poama2, (1 — p22)T22)

¢
B(y; + po3te3, 2z + (1 — T ‘
p(/"’23, 723 | z,Y, I‘) 158 p(ﬂ'?i’n T23) H { (y B(itz;zi (;. . 223)7/::2:;) 23) } (A5)

1=1
where p(u21, 721), p(p21, 721) and p(ug1, 721) are the prior distributions. Note thast
conditional on z, the tuplets (uo,, 7or) are independent over r.
Also, z; | y,r, pos, 725, 8 = 1,2,3 are independent with

plzi =t|y,r,pos, 725, =1,2,3) = wy/ Z wis, t=0,1,...,n,—71; (A.6)
5=0
1) 4(2) 43
Ay 4 47
B(t+1, ni—Ti—t+l),

Wit =

Az('tl) = B(y; +t + po17o1, ni —t —y; + (1 — p21)7o1)
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Aﬁf) = B(y; +t+ po1721, 1 —t — ¥i + (1 — p21)721)
Aﬁf) = B(y; + pa3tos, t+ (1 — p23)723)-

We run the Metropolis-Hastings sampler by drawing a random deviate from
each of (A.3), (A.4), (A.5) and (A.6). It is easy to draw a random deviate from
(A.6). Samples can be obtained from each of (A.3), (A.4) and (A.5) by using the
algorithm of Nandram (1998).

Appendix 2
An approzimate form for var{u(f;, Q) | D,z = t)}

We use a multivariate Taylor’s series expansion.
Let ¢ = (¢o,¢1)', we obtain an approximation to the posterior var(¢ | D).
We use the posterior density of ¢ given z = £

cig, + B0y diz, — ¢4, + $1)
B(¢o, ¢1)

Z
) B
p(¢|Dz=1) <[] (
=1

and denote its logarithm by A(¢) where

¢
Alp) = > {[log(T(c;s, + ¢o)) +logT(dyg, — ci5, + d1) — log T(dyg, + o + )]
i=1
— [logT'(¢o) + log T'(¢1) — log T'(¢ho + 1)1}

We obtain an approximation for var(¢ | D) by using the negative inverse Hessian
matrix of A(¢) at ¢.
First, we let

gt = (dit — cit + 1)/ (dir + ¢o + ¢1)?
goit = —(cit + d0)/(die + do + 1)*

¢
hiy = Z{W(ﬁf’o) — ' (cit + o)} + he
i=1
/4
hoe = 3 {W'($1) — 9/ (dir — cit + d1)} + I
i=1

£
he = 3 (¥ (die + do + b1) — ¢ (o + 1)},
i=1
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where 1/(-) is the trigamma function. When hjshgy < h?, we take h; = 0. Because
¥'(-) is a strictly decreasing function, h; = 0 if and only if ¥/(dis + ¢o + ¢1)
= 9'(do + $1). While this is false because 9'(-) decreases very slowly for values
of its arguments, especially the assumption h; = 0 is reasonable. Also, letting
ky = (1 — h2/h1that) ! we define

vie, = ke/hie
vor = k¢fhot
n = —kt,ht/hlthzt-

Then
7 7 2 2
var{u(t;, Q) | D,z = t} = gi;; v1; + 2914, 92i2, Vi + 9o, Voi-
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