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Abstract
In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-

parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed
distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its
cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate ex-
pressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution
can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and
Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with
Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG
distribution. Finally, summary and discussion are mentioned.

Keywords: Bayesian estimation, EM Algorithm, exponentiated Weibull distribution, exponentiated
Weibull geometric distribution, geometric distribution, Gibbs sampler, hazard function, Metropolis-
Hastings algorithm, MLE, Markov chain Monte Carlo (MCMC).

1. Introduction

Several distributions have been proposed to model lifetime data. Mudholkar et al. (1995) have intro-
duced a two-parameter exponentiated Weibull (EW) distribution as an extension of Weibull distribu-
tions. Other statistical properties of EW distributions have been examined by Nassar and Eissa (2003,
2004). They had derived Bayes estimates for the two shape parameters, reliability and failure rate
functions of EW distributions. Kim et al. (2011) have investigated the Bayesian estimator for the EW
model under progressive Type II censoring. Jung and Chung (2013) studied the Bayesian prediction
of EW distribution based on progressive type II censoring.

The Weibull and EW distributions has been widely used in survival analyses and reliability studies
due to their simplicity. However, they did not provide a reasonable parametric fit in some practical ap-
plications. Recently, attempts have been made to define new families of probability distributions that
extend well-known families of distributions and that time provide great flexibility in modeling data in
practice. Alexander et al. (2012) mentioned that new techniques for building meaningful distributions
are widely investigated, including the two-piece approach by Hansen (1994), the pertubation approach
of Azzalini and Capitanio (2003), the generator approach by Eugene et al. (2002) and compounding
approach by Barreto-Souza et al. (2011). In general, compounding approach is as follows; let Y be
the lifetime of a system, defined by

X = min
1≤i≤Z

(Yi) or X = max
1≤i≤Z

(Yi), (1.1)
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where the distribution of Yi belongs to one of the well-known lifetime distributions and the random
variable Z has one of the discrete distributions. Then the unconditional marginal distribution of X has
been considered as a new family of lifetime distribution. Moreover, generalized Beta-type distribu-
tions based on the generator approach are studied by Cordeiro et al. (2011) and Bidram et al. (2011).
For more details, see Nadarajah et al. (2013).

In this article, we propose a new three-parameter distribution, referred to as the exponentiated
Weibull geometric (EWG) distribution based on the compounding approach, which contains as spe-
cial sub-models Weibull (W), exponentiated Weibull (EW) and generalized exponential (GE) distribu-
tion. Here, we compound X = min1≤i≤Z(Yi) with the geometric distribution Z where Yi is distributed
to the two-parameter exponentiated Weibull distributions. We showed that the hazard function of
EWG distributions can be decreasing, increasing and bathtub-shaped. Several properties of EWG
distributions such as quantiles, moments, maximum likelihood estimation (MLE) procedure via an
EM algorithm, Bayesian estimation, Renyi and Shannon entropies and moments of order statistics are
obtained. Also, two real lifetime data set are used for comparing the proposed EWG model with the
competing models using AIC, BIC and graphs. Recently, Mahmoudi and Shiran (2012) proposed the
similar exponentiated Weibull geometric using the same compounding approch based on the three-
parameter exonentiated Weibull distributions but they used X = max1≤i≤Z(Yi) which is different to
our proposed techique X = min1≤i≤Z(Yi). Also, Mahmoudi and Shiran (2012) studied the properties
of its different types of submodels using MLE only without Bayesian estimates and real data to be
explained for comparing models.

The paper is organized as follows. We propose the EWG distribution in Section 2. We obtain the
cumulative distribution function (cdf), survivor function, hazard functions and the probability density
function (pdf) of the order statistics, quantiles, moments of order statistics and Renyi and Shannon
entropies in Section 3. The methods for obtaining MLE using EM algorithm and Bayesian estimators
using MCMC method are explained in Section 4. We obtain the MLE and Bayesian estimates of
parameters from the EWG model based on real lifetime data for application and compare the EWG
model with the competing models using AIC, BIC and graphs in Section 5. Finally, summary and
discussion are mentioned in Section 6.

2. The EWG Distribution

Suppose that {Yi}Zi=1 are independent and identically distributed (iid) random variables from the Expo-
nentiated Weibull(EW) distribution EW(α, β) with α > 0, β > 0 proposed by Mudholkar et al. (1995)
and the probability density distribution (pdf) and the cumulative distribution(cdf) are given by

g(y|α, β) = αβyα−1e−yα
(
1 − e−yα

)β−1
, y > 0, (2.1)

and

G(y|α, β) =
(
1 − e−yα

)β
, y > 0, (2.2)

respectively. And Z is a discrete random variable having a geometric distribution with the probability
function

P(z|p) = (1 − p)pz−1, z = 1, 2, . . . , 0 ≤ p < 1. (2.3)
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Figure 1: Pdf of the EWG distribution for selected values of the parameters.

Let X = min {Yi}Zi=1. Then the conditional pdf X on Z = z is given by

g(x|z, α, β) = z
[
1 −G(x|α, β)

]z−1 g(x|α, β)

= zαβxα−1e−xα
(
1 − e−xα

)β−1
(
1 −

(
1 − e−xα

)β)z−1
, (2.4)

where g(x|α, β) and G(x|α, β) are in (1.1) and (2.1), respectively. Therefore the marginal pdf of X is
given by

f (x|p, α, β) =
∞∑

z=1

zαβxα−1e−xα
(
1 − e−xα

)β−1
(
1 −

(
1 − e−xα

)β)z−1
(1 − p)pz−1

=
αβ(1 − p)xα−1e−xα

(
1 − e−xα

)β−1(
1 − p

(
1 − (1 − e−xα )β

))2 , (2.5)

which defines the exponentiated Weibull geometric (EWG) denoted by EWG(p, α, β). It is clear that
(2.4) is more flexible than the EW distribution. The exponentiated exponential geometric (EEG)
distribution is a specal case of the EWG distribution for α = 1. When p approaches zero, the EWG
distribution leads to the EW distribution. Figure 1 shows the EWG density for various values of the
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parameter (α, β) when p = 0.1, 0.3, 0.5, 0.7 and 0.9. For all values of parameters, the density tends to
zero as x→ ∞.

If |z| < 1 and k > 0, we have the series representation

(1 − z)−k =

∞∑
j=0

Γ(k + j)
Γ(k) j!

z j. (2.6)

Expanding {1 − p(1 − (1 − e−xα )β))−2} as in (2.5), we can write (2.4) as

f (x|p, α, β) = αβ(1 − p)xα−1e−xα
(
1 − e−xα

)β−1
∞∑
j=0

( j + 1)p j
(
1 −

(
1 − exα

)β) j

=

∞∑
j=0

∞∑
k=0

(−1)k
(

j + 1
j − k

)
p jg (x;α, β(k + 1)) , (2.7)

where g(x;α, β(k + 1)) is defined in (1.1). The pdf of the EWG distribution can be expressed as an
infinite mixture of EW distributions.

Hence, some mathematical properties (cdf, moments, percentiles, moment generating function,
factorial moments, etc.) of the EWG distribution can be obtained using (2.6) from the corresponding
properties of the EW distribution.

3. Properties of the EWG Distribution

3.1. The distribution and hazard functions and order statistics.

Let X be a random variable such that X is distributed to EWG distribution with parameters (p, α, β),

X ∼ EWG(p, α, β).

The cdf is given by

F(x) =

(
1 − e−xα

)β
1 − p

(
1 − (1 − e−xα )β

) , x > 0. (3.1)

The survivor and hazard functions are

S (x) =
(1 − p)

(
1 −

(
1 − e−xα

)β)
1 − p

(
1 − (1 − e−xα )β

) , x > 0 (3.2)

and

h(x) =
αβxα−1e−xα

(
1 − e−xα

)β−1(
1 − (1 − e−xα )β

) (
1 − p

(
1 − (1 − e−xα )β

)) , x > 0 (3.3)

respectively. We illustrates some of the possible shapes of the hazard function for selected values of
the (α, β) when p = 0.1, 0.3, 0.5, 0.7 and 0.9 in Figure 2. These plots show that the hazard function
of the EWG distribution is quite flexible.
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Figure 2: Hazard rate function of the EWG distribution for selected values of the parameters.

We now calculate the pdf of the order statistics. Let gr:n(x) be the pdf of the rth order statistic of
the EW distirubion with parameters α, β given by

gr:n(x) =
αβxα−1e−xα

(
1 − e−xα

)βr−1
(
1 −

(
1 − e−xα

)β)n−r

B(r, n − r + 1)
. (3.4)

where B(a, b) =
∫ 1

0 wa−1(1 − w)b−1dw denotes the beta function.
Let X1, . . . , Xn be random variables such that Xr ∼ EWG(p, α, β) independently for r = 1, . . . , n.

The pdf of the rth order statistic, Xr:n say, in given by, for x > 0

fr:n(x) =
1

B(r, n − r + 1)
f (x) [F(x)]r−1 [1 − F(x)]n−r (3.5)

=

αβ(1 − p)n−r+1xα−1e−xα
(
1 − e−xα

)βr−1
(
1 −

(
1 − e−xα

)β)n−r

B(r, n − r + 1)
(
1 − p

(
1 − (1 − e−xα )β

))n+1 ,

Equation (3.4) can be rewritten in terms of gr:n(x) in (3.3) as

fr:n(x) = (1 − p)n−r+1
(
1 − p

(
1 −

(
1 − e−xα

)β))−(n+1)
gr:n(x). (3.6)
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Further, we express the pdf of Xr:n as a mixture distribution of EW order statistic densities. Using
(2.5) and (3.5), we obtain

fr:n(x) = (1 − p)n−r+1
∞∑

i=0

pi (n + i)!
n!i!

n!
(r − 1)!(n − r)!

B(r, n + i − r + 1)
B(r, n + i − r + 1)

∗ αβxα−1e−xα
(
1 − e−xα

)βr−1
(
1 −

(
1 − e−xα

)β)b+i−r

= (1 − p)n−r+1
∞∑

i=0

pi
(
n + i − r

i

)
gr:n+i(x), (3.7)

where gr:n+i(x) is defined in (3.3). Hence, using (3.6), some mathematical properties for the order
statistics of the EWG distribution can be immediately obtained from the corresponding properties of
the EW order statistics.

3.2. Quantiles and moments

The quantile u(xu) of the EWG distribution follows from (2.7) as

xu =

− log

1 − (
u − pu
1 − pu

) 1
β




1
α

. (3.8)

In particular, the median is simply calculated as x0.5 = (− log(1 − ((1 − p)/(2 − p))1/β))1/α. Suppose
that Y ∼ EW(α, β). Then the rth moment of Y is given by

E(Yr) =
∫ ∞

0
yrαβyα−1e−yα

(
1 − e−yα

)β−1
dy

= β

∞∑
j=0

(
β − 1

j

)
(−1) jΓ

( r
α
+ 1

)
( j + 1)−(

r
α+1). (3.9)

Suppose that X ∼ EWG(p, α, β). Then the rth moment of X is given by

E(Xr) =
∞∑
j=0

∞∑
k=0

(−1)k(1 − p)p j
(

j + 1
j − k

) ∫ ∞

0
xrαβ(k + 1)xα−1e−xα

(
1 − e−xα

)β(k+1)−1
dx

=

∞∑
j=0

∞∑
k=0

(−1)k(1 − p)p j
(

j + 1
j − k

) ∫ ∞

0
xr fEW (x;α, β(k + 1))dx

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+k(1 − p)p jβ(k + 1)

∗ (i + 1)−(
r
α+1)

(
j + 1
j − k

)(
β(k + 1) − 1

i

)
Γ

( r
α
+ 1

)
. (3.10)
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Using Equation (3.9), the moment generating function of the EWG distribution is given by

MX(t) = E

 ∞∑
r=0

tr

r!
Xr


=

∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
r=0

tr

r!
(−1)i+k(1 − p)p jβ(k + 1)

∗ (i + 1)−(
r
α+1)

(
j + 1
j − k

)(
β(k + 1) − 1

i

)
Γ

( r
α
+ 1

)
. (3.11)

The kth moment of the rth order statistics Yr:n had on Y1, . . . ,Yn from EW(α, β) is given by

E
(
Yk

r:n

)
=

αβ

B(r, n − r + 1)

n−i∑
j=0

∞∑
s=0

(−1) j+sΓ

(
k
α
+ 1

)
(k + 1)−(

k
α+1)

(
n − r

j

)(
β(r + j) − 1

s

)
. (3.12)

The kth moment of the rth order statistics Xr:n had on X1, . . . , Xn from EWG(p, α, β) is given by

E
(
Xk

r:n

)
=

∫ ∞

0
xk(1 − p)n−r+1

∞∑
i=0

pi
(
n + i − r

i

)
gr:n+i(x)dx

= (1 − p)n−r+1
∞∑

i=0

pi
(
n + i − r

i

) ∫ ∞

0
xkgr:n+i(x)dx. (3.13)

We can express the rth moment of Xr:n as mixture of EW order statistic densities as follows;

E
(
Xk

r:n

)
= (1 − p)n−r+1

∞∑
i=0

pi
(
n + i − r

i

)
EEW

[
Xk

r:n+i

]
. (3.14)

3.3. Renyi and Shannon entropies

Entropy has widely been used in various situations in engineering. The entropy of a random variable X
is a measure of variation of the uncertainty. Renyi entropy is defined by IR(r) = 1/(1 − r) log(

∫
R f r(x)

dx), for r > 0 and r , 1. For the EWG distribution, the power series expansion gives∫ ∞

0
f r(x)dx = [αβ(1 − p)]r

∞∑
j=0

Γ(2r + j)
Γ(2r) j!

p j
∫ ∞

0
xr(α−1)

(
e−xα

)r (
1 − e−xα

)r(β−1)
(
1 −

(
1 − e−xα

)β) j
dx

= [αβ(1 − p)]r
∞∑
j=0

∞∑
k=0

∞∑
l=0

p j(−1)(k+l) Γ(2r + j)
Γ(2r) j!

Γ( j + 1)
Γ( j + 1 − k)k!

∗ Γ(β(r + k) − r + 1)
Γ(β(r + k) − r − l)l!

Γ

(
rα − r + 1

α

)
(r + l)−

rα−r+1
α . (3.15)

Substituting from (3.14), the Renyi entropy is given by

IR(r) =
1

1 − r
log

{
[αβ(1 − p)]r

∞∑
j=0

∞∑
k=0

∞∑
l=0

p j(−1)(k+l) Γ(2r + j)
Γ(2r) j!

Γ( j + 1)
Γ( j + 1 − k)k!

∗ Γ(β(r + k) − r + 1)
Γ(β(r + k) − r − l)l!

Γ

(
rα − r + 1

α

)
(r + l)−

rα−r+1
α

}
. (3.16)
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The Shannon entropy which is defined by E[− log( f (X))], is derived from limr→1 IR(r).

4. Estimation

4.1. Maximum Likelihood Estimator (MLE)

Let x = (x1, . . . , xn) be a random sample from the EWG distribution in (2.4) with unknown parameter
vector θ = (p, α, β)′. Then the log likelihood function ℓ = ℓ(θ; x) for θ is

ℓ = n logα + n log β + n log(1 − p) + (α − 1)
n∑

i=1

log(xi)

−
n∑

i=1

xαi + (β − 1)
n∑

i=1

log
(
1 − e−xαi

)
− 2

n∑
i=1

log
(
1 − p

(
1 − e−xαi

)β)
.

The score function U(θ) = (∂ℓ/∂p, ∂ℓ/∂α, ∂ℓ/∂β)T is based on a random sample of the EWG distri-
bution in (2.4) has components as follows;

∂ℓ

∂α
=

n
α
+

n∑
i=1

log(xi) −
n∑

i=1

xαi log(xi) +
n∑

i=1

(β − 1)xαi log(xi)e−xαi

1 − e−xαi

− 2
n∑

i=1

pβxαi log(xi)e−xαi (1 − e−xαi )β−1

1 − p(1 − (1 − e−xαi )β)
,

∂ℓ

∂β
=

n
β
+

n∑
i=1

log
(
1 − e−xi

α
)
+ 2

n∑
i=1

p
(
1 − e−xαi

)β
log

(
1 − e−xαi

)
1 − p

(
1 −

(
1 − e−xαi

)β) ,

∂ℓ

∂p
= − n

1 − p
+ 2

n∑
i=1

1 −
(
1 − e−xαi

)β
1 − p

(
1 −

(
1 − e−xαi

)β) . (4.1)

The maximum likelihood estimate (MLE) θ̂ of θ is calculated numerically from the nonlinear equa-
tions U(θ)=0. Here, we use the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan,
1997) to obtain θ̂. First of all, we can obtain a complete likelihood function of as follows;

Lc(θ) =
n∏

i=1

g (xi|zi, θ) p(zi|θ)

= [αβ(1 − p)]n
n∏

i=1

{
tzixα−1

i e−xαi
(
1 − e−xαi

)β−1
[
p
(
1 −

(
1 − e−xαi

)β)]zi−1
}
. (4.2)

The complete log-likelihood function of θ is

log Lc(θ) = n logα + n log β + n log(1 − p) +
n∑

i=1

log zi + (α − 1)
n∑

i=1

log xi −
n∑

i=1

xαi

+ (β − 1)
n∑

i=1

log
(
1 − e−xαi

)
+ log p

n∑
i=1

(zi − 1) +
n∑

i=1

log
(
1 −

(
1 − e−xαi

)β)
(zi − 1). (4.3)
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Therefore, the E-step is Q(θ : θ(k)) = Eθ(k) [log Lc(θ)|X, θ] where θ(k) denotes the expectation with
respect to the conditional density of Z given X and θ evaluated at (θ(k), θ) that is, the kth current estimate
of θ. The conditional density of Z given X and θ is

P(zi|xi, θ) = zi

[
p
(
1 −

(
1 − e−xαi

)β)]zi−1 [
1 − p

(
1 −

(
1 − e−xαi

)β)]2
, (4.4)

and the conditional expectation of Z given X and θ is given by

E[zi|xi, θ] =
∞∑

z=1

z2
i

[
p
(
1 −

(
1 − e−xα

)β)]zi−1 [
1 − p

(
1 −

(
1 − e−xα

)β)]2

=

1 + p
(
1 −

(
1 − e−xα

)β)
1 − p

(
1 − (1 − e−xα )β

)
= Wi(p, α, β). (say) (4.5)

Now, the E-step is given as follows;

Q
(
θ : θ(k)

)
= Eθ(k)

[
log Lc(θ)|X, θ]

= n logα + n log β + n log(1 − p) +
n∑

i=1

Eθ(k)

[
log zi|xi, θ

]
+ (α − 1)

n∑
i=1

log xi

−
n∑

i=1

xαi + (β − 1)
n∑

i=1

log
(
1 − e−xαi

)
+ log p

n∑
i=1

(Wi(p, α, β) − 1)

+

n∑
i=1

log
(
1 −

(
1 − e−xαi

)β)
(Wi(p, α, β) − 1)

= Q∗(θ : θ(k)) +
n∑

i=1

Eθ(k)

[
log zi|xi, θ

]
. (4.6)

Since the term of Eθ(k) [log z|X, θ] is not needed for maximizing Q(θ; θ(k)) = Eθ(k) [log Lc(θ)|X, θ], maxi-
mizing Q(θ : θ(k)) is equivalent to maximaing Q∗(θ : θ(k)) where

Q∗
(
θ : θ(k)

)
= n logα + n log β + n log(1 − p) + (α − 1)

n∑
i=1

log xi

−
n∑

i=1

xαi + (β − 1)
n∑

i=1

log
(
1 − e−xαi

)
+ log p

n∑
i=1

(
W (k)

i − 1
)

+

n∑
i=1

log
(
1 −

(
1 − e−xαi

)β) (
W (k)

i − 1
)
. (4.7)

Next, let θ(k+1) = argmaxQ∗(θ; θ(k)) in (4.6) over θ. Then θ(k+1) = (p(k+1), α(k+1), β(k+1)) is obtained as
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follows;

∂Q∗
(
θ : θ(k)

)
∂p

= − 1
1 − p

+
1
p

n∑
i=1

W (k)
i , p(k+1) = 1 − n∑n

i=1 W (k)
i

, (4.8)

∂Q∗
(
θ : θ(k)

)
∂α

=
m

α(k+1) +

n∑
i=1

log xi −
n∑

i=1

xα
(k+1)

i log xi +
(
β(k+1) − 1

) n∑
i=1

xα
(k+1)

i log xie−xα
(k+1)

i

1 − e−xα(k+1)
i

−
n∑

i=1

β(k+1)xi
α(k+1)

log xie−xi
α(k+1)

(
1 − e−xi

α(k+1)
)β(k+1)−1

1 −
(
1 − e−xi

α(k+1) )β(k+1)

(
W (k)

i − 1
)

(4.9)

and

∂Q∗
(
θ : θ(k)

)
∂β

=
n
β
+

n∑
i=1

log
(
1 − e−xi

α(k+1)
)

−
n∑

i=1

(
1 − e−xi

α(k+1)
)β(k+1)

log
(
1 − e−xi

α(k+1)
)

1 −
(
1 − e−xi

α(k+1) )β(k+1)

(
W (k)

i − 1
)
, (4.10)

where W (k)
i = Wi(p(k), α(k), β(k)) in (4.5).

4.2. Bayesian estimation

Assume that p, α and β are independent. The prior π0(p) for p is assumed to be beta distribution with
parameters a0 and b0 and each prior for α, β is gamma distribution as follows;

π0(p) =
1

B(a0, b0)
pa0−1(1 − p)b0−1,

π1(α) =
ba1

1

Γ(a1)
αa1−1e−b1α

and

π2(β) =
ba2

2

Γ(a2)
βa2−1e−b2β,

where ai and bi are known for i = 0, 1, 2.
The joint posterior density for p, α, β given the observed data x1, . . . , xn from EWG in (2.4) is

obtained as follows;

π (p, α, β|x1, . . . , xn) ∝
n∏

i=1

αβ(1 − p)xα−1
i e−xαi

(
1 − e−xαi

)β−1(
1 − p

(
1 −

(
1 − e−xαi

)β))2

∗ pa0−1(1 − p)b0−1αa1−1eb1αβa1−1eb1β. (4.11)
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Table 1: MLEs and Bayesian estimates for the plasma concentrations of indomethacin data
EWG model p α β

MLEs 0.7672 1.0210 1.3125
(0.0345) (0.1424) (0.1653)

Bayesian estimates 0.7753 1.2536 1.2960
(0.0319) (0.1397) (0.2016)

Therefore, Gibbs sampling (Gelfand and Smith, 1990) the full conditional distributions (FCD) are
obtained from (4.8) as follows;

π (p|α, β, x1, . . . , xn) ∝ pa0−1(1 − p)b0−1
n∏

i=1

p(
1 − p

(
1 −

(
1 − e−xαi

)β))2 ,

π (α|p, β, x1, . . . , xn) ∝ αa1−1eb1α
n∏

i=1

αxαi e−xαi
(
1 − e−xαi

)β−1(
1 − p

(
1 −

(
1 − e−xαi

)β))2 ,

and

π (β|p, α, x1, . . . , xn) ∝ βa2−1eb2β
n∏

i=1

β
(
1 − e−xαi

)β(
1 − p

(
1 −

(
1 − e−xαi

)β))2 . (4.12)

For generating random samples of p, α and β in Gibbs sampling, we use the Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970) because of having intractable full conditional
distributions.

5. Application to Real Life Data

In this section, we fit the EWG models to two real data sets. The first data set is about the plasma
concentrations of indomethacin following intravenous injection. We used the pooled data with 66
observation in Kwan et al. (1976). The second data set consists of 128 observations on phosphorus
concentration in the leaves which is studied by Fonseca and Franca (2007). For the Bayesian inference
of these two data set, flat priors are used in the absense of any strong prior information,. That is, the
prior π0(p) for p is assumed to be beta distribution with parameters a0 = 1 and b0 = 1. Each prior for
α, β is gamma distribution with parameters a1 = a2 = 1 and b1 = b2 = 0. Then, the joint posterior
density is proportional to the likelihood function. In order to obtain the Bayes estimates of p, α and
β, we apply the Metropolis-Hasting algorithms into the FCDs (4.9) within Gibbs sampler. Here, the
each prior distributions are used as the proposed distributions in Metropolis-Hastings algorithm steps.
Then, we run the Gibbs sampler to generate a Markov chain with 50,000 samples. Discarding the first
10,000 values as burn-in and taking every fifth variates as iid samples.

Example 1. For the plasma concentrations of indomethacin data set, we obtain the Bayeses esti-
mates and MLEs of parameters from EWG model in Table 1.

Next, we fitted the EWG, EW, generalized exponential (GE) and Weibull (W) distribution to these
data by the method of maximum likelihood. The MLEs of the parameters and the Akaike information
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Figure 3: Fitted EWG, EW, GE and Weibull dinsities for phosphorus concentration in leaves data.

Table 2: MLEs of the model parameters for the plasma concentrations of indomethacin data, the AIC and BIC
measures.

Model p α β AIC BIC
EWG 0.7672 1.0210 1.3125 64.9393 71.5082
EW 0 1.3650 0.5596 69.9762 74.3555
GE 0 1.6714 0.9836 66.7482 71.1275
W 0 1 0.9366 79.7124 81.9020

Table 3: MLEs and Bayesian estimates for phosphorus concentration in leaves data
EWG model p α β

MLEs 0.9999 8.7544 0.4793
(0.2196) (0.3951) (0.3862)

Bayesian estimates 0.9982 8.3961 0.6153
(0.1975) (0.3862) (0.3810)

criterion (AIC) and Bayesian information criterion (BIC) for the fitted models are displayed in Table
2.

Our first comparison is based on the likelihood ratio test (LRT) of H0 : p = 0 (EW model) against
H1 : p , 0 (EWG model).

The LRT can be used, based on the fact that a log-likelihood (log L) ratio statistic is asymptotically
chi-square distributed with one degree of freedom. Since the LR statistic for testing the hypotheses H0
vs. H1 is 7.0369, we reject the null hypotheses H0 : p = 0 (EW model). That is, the EWG distribution
provides a significantly better goodness of fit than the EW distribution.The plots of the fitted EWG,
EW, GE and W densities are shown in Figure 3. It indicates that the proposed distribution provides
better goodness of fit than the other sub-models.

Example 2. For the second data set, we obtain the Bayeses estimates and MLEs of parameters from
EWG model in Table 3.

Next, we fitted the EWG, EW, GE and W distribution to these data by the method of maximum
likelihood. The MLEs of the parameters and the AIC and BIC for the fitted models are displayed in
Table 4.

The LR statistic for testing the hypotheses H0 vs H1 is 301.0515. So, we reject the null hypotheses
in this case in favour of the EWG distribution. The plots of the fitted EWG, EW, GE and W densities
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Table 4: MLEs of the model parameters for the phosphorus concentration in leaves data, the AIC and BIC
measures.

Model p α β AIC BIC
EWG 0.9999 8.7544 0.4793 −378.519 −369.963
EW 0 9.6050 0.0510 −79.468 −73.761
GE 0 21.1327 10.6058 −388.043 −382.338
W 0 1 0.6596 −0.0007 2.8513

Figure 4: Fitted EWG, EW, GE and Weibull dinsities for phosphorus concentration in leaves data.

are shown in Figure 4. It indicates that the proposed distribution provides better goodness of fit than
the other sub-models.

6. Summary and Discussion

We introduce a new model called the exponentiatedWeibull-geometric (EWG) distribution which gen-
eralizes two-parameter exponentiated Weibull (EW) distribution, whose failure rate function can be
increasing, decreasing and bathtub-shaped. This proposed distribution is obtained by compounding
the exponentiated Weibull with geometric distribution. Its density function can be expressed as a mix-
ture of exponentiatedWeibull densities. Also, we derive its cumulative distribution function (CDF),
hazard function and the density of the order statistics and calculate expressions for its moments and the
mo- ments of the order statistics. We give expressions for the Renyi and Shannon entropies. The maxi-
mum likelihood estimation and Bayesian estimation are obtained by using EM-algorithm (Dempster et
al., 1977; McLachlan and Krishnan, 1997) and by using Gibbs sampler with Metropolis-Hastings al-
gorithm respectively. Fianlly, we present the use of LR statistics to compare the fit of the EWG model
with EW model. Also, we fitted EWG model to real data sets to show the exibility and potentially
of the new model using AIC and BIC. Further works includes compounding the three-parameter ex-
ponential Weibull distribution with the geometric distribution and obtaining its properties and estima-
tions on progressively type II censoring. Especially, Lindley method, Tierney-Kadane approximation
and importance sampling method for computing Bayes estimation will be investigated.
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