DOI QR코드

DOI QR Code

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong (Department of Applied Statistics, Yonsei University) ;
  • Balgobin Nandram (Department of Mathematical Sciences, Worcester Polytechnic Institut) ;
  • Kim, Seong-Jun (Depatment of Industrial Engineering, kangnung National University) ;
  • Choi, Il-Su (Department of Applied Mathematics, Yosu National University) ;
  • Ahn, Yun-Kee (Department of Applied Statistics, Yonsei University) ;
  • Kim, Chul-Eung (Department of Applied Statistics, Yonsei University)
  • Published : 2004.08.01

Abstract

The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.

Keywords

References

  1. Annals of Statistics v.57 On Monte Carlo methods for estimating ratios of normalizing constants Chen, M.-H.;Shao, Q.-M.
  2. Journal of the American Statistical Association v.90 Marginal likelihood from the Gibbs output Chib, S. https://doi.org/10.2307/2291521
  3. Journal of the American Statistical Association v.96 Marginal likelihood from the Metropolis-Hastings output Chib, S.;Jeliazkov, I. https://doi.org/10.1198/016214501750332848
  4. Journal of the American Statistical Association v.92 Computing Bayes factors by combining simulation and asymptotic approximations DiCiccio, T. J.;Kass, R. E.;Raftery, A. E.;Wasserman, L. https://doi.org/10.2307/2965554
  5. Journal of the Royal Statical Society v.B56 Bayesian model choice: asymptotics and exact calculations Gelfand,A.;Dey,D.K.
  6. Biometrika v.85 Model choice: Minimum posterior predictive loss approach Gelfand, A.;Ghosh, S. https://doi.org/10.1093/biomet/85.1.1
  7. Biometrika v.82 Efficient parameterizations for normal linear mixed models Gelfand, A.;Sahu, S.;Carlin, B. https://doi.org/10.1093/biomet/82.3.479
  8. Journal of the American Statistical Association v.96 Markov chain Monte Carlo methods for computing Bayes factors: A comparative review Han, C.;Carlin, B. P. https://doi.org/10.1198/016214501753208780
  9. Journal of the American Statistical Association v.90 Bayes factors Kass, R. E.;Raftery, A. E. https://doi.org/10.2307/2291091
  10. Statistica Sinica v.6 Simulating ratios of normalizing constants via a simple identity: a theoretical exploration Meng, X. -L.;Wong, W. H.
  11. Generalized linear models: A Bayesian Perspective Bayesian generalized linear models for inference about small areas Nandram, B.;D. K. Dey(ed.);S. K. Ghosh(ed.);B. K. Mallick(ed.)
  12. Journal of Statistical Computation and Simulation v.72 Marginal likelihood for a class of bayesian generalized linear models Nandram, B.;Kim, H. https://doi.org/10.1080/00949650212842
  13. Density Estimation for Statistics and Data Analysis Silverman,B.
  14. Journal of the American Statistical Association v.90 Computing Bayes factors using a generalization of the Savage-Dickey density ratio Verdinelli,I.;Wasserman,L. https://doi.org/10.2307/2291073
  15. Journal of the American Statistical Association v.92 Hierarchical spatio-temporal mapping of disease rates Waller, L.;Carlin, B.;Xia, H.;Gelfand, A. https://doi.org/10.2307/2965708