• Title/Summary/Keyword: Metric

Search Result 2,946, Processing Time 0.033 seconds

COMMON FIXED POINT THEOREM AND INVARIANT APPROXIMATION IN COMPLETE LINEAR METRIC SPACES

  • Nashine, Hemant Kumar
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.533-541
    • /
    • 2012
  • A common fixed point result of Gregus type for subcompatible mappings defined on a complete linear metric space is obtained. The considered underlying space is generalized from Banach space to complete linear metric spaces, which include Banach space and complete metrizable locally convex spaces. Invariant approximation results have also been determined as its application.

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.543-557
    • /
    • 2017
  • Jin [10] studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study further the geometry of this subject. The object of this paper is to study the geometry of half lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

HARMONIC HOMOMORPHISMS BETWEEN TWO LIE GROUPS

  • Son, Heui-Sang;Kim, Hyun Woong;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we get a complete condition for a group homomorphism of a compact Lie group with an arbitrarily given left invariant Riemannian metric into another Lie group with a left invariant metric to be a harmonic map, and then obtain a necessary and sufficient condition for a group homomorphism of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, $h_0$) to be a harmonic map.

NON-EXISTENCE OF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE TRANS-SASAKIAN MANIFOLDS WITH NON-METRIC 𝜃-CONNECTIONS

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • We study two types of 1-lightlike submanifolds, so-called lightlike hypersurface and half lightlike submanifold, of an indefinite trans-Sasakian manifold $\bar{M}$ admitting non-metric ${\theta}$-connection. We prove that there exist no such two types of 1-lightlike submanifolds of an indefinite trans-Sasakian manifold $\bar{M}$ admitting non-metric ${\theta}$-connections.

On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • In this paper, we give definitions of compatible mappings of type(${\gamma}$) in intuitionistic fuzzy metric space and obtain common fixed point theorem under the conditions of weak compatible mappings of type(${\gamma}$) in complete intuitionistic fuzzy metric space. Our research generalize, extend and improve the results given by Sedghi et.al.[12].

ON TWO-DIMENSIONAL LANDSBERG SPACE WITH A SPECIAL (${\alpha},\;{\beta}$)-METRIC

  • Lee, Il-Yong
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.279-288
    • /
    • 2003
  • In the present paper, we treat a Finsler space with a special (${\alpha},\;{\beta}$)-metric $L({\alpha},\;{\beta})\;\;C_1{\alpha}+C_2{\beta}+{\alpha}^2/{\beta}$ satisfying some conditions. We find a condition that a Finsler space with a special (${\alpha},\;{\beta}$)-metric be a Berwald space. Then it is shown that if a two-dimensional Finsler space with a special (${\alpha},\;{\beta}$)-metric is a Landsberg space, then it is a Berwald space.

  • PDF

Hypersurfaces of an almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Non-metric Connection

  • Ahmad, Mobin;Haseeb, Abdul;Ozgur, Cihan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.533-543
    • /
    • 2009
  • We define a quarter symmetric non-metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection.

THE SEPARABLE WEAK BOUNDED APPROXIMATION PROPERTY

  • Lee, Keun Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.69-83
    • /
    • 2015
  • In this paper we introduce and study the separable weak bounded approximation properties which is strictly stronger than the approximation property and but weaker than the bounded approximation property. It provides new sufficient conditions for the metric approximation property for a dual Banach space.