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SIMULATION FUNCTIONS OVER M-METRIC SPACES

Mehdi Asadi∗, Mahdi Azhini, Erdal Karapınar, and Hossein Monfared

Abstract. In this paper, existence of fixed point of certain operators
imbedded in simulation function has been investigated in context of a

complete M -metric spaces.

1. Introduction

Inspired from the notion of partial metric, introduced by Matthews [7], Asadi
et al. [5] proposed the concept of a M -metric which refine the notion of partial
metric. Like standard metric, M -metric has a topology and produce useful basic
topological concepts.

Recently, Khojasteh et al.. proposed the notion of simulation function to
unify the several existing fixed point results in the literature. In this paper,
we investigate the existence and uniqueness of fixed points of certain mappings
via simulation functions in the context of complete M -metric spaces. We shall
also indicate that several results in the literature can be derived from our main
results.

Definition 1. ( see [2]) A function σ : [0,∞) × [0,∞) → R is said to be
simulation if it fulfils:
(σ1) σ(0, 0) = 0;
(σ2) σ(t, u) < u− t for all t, u > 0;
(σ3) if {tn}, {un} are sequences in (0,∞) such that limn→∞ tn = limn→∞ un >
0, then

lim sup
n→∞

σ(tn, un) < 0. (1)

Let Σ be the collection of all simulation functions σ : [0,∞) × [0,∞) → R.
On account of the property (σ2), we conclude that

σ(t, t) < 0 for all t > 0. (2)
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Example 1.1. Let σ : [0,∞)×[0,∞)→ R be a mapping such that σ(t, u) = u
2−t

for all t, u ∈ [0,∞). It is obvious that σ is a simulation function. For more
examples of simulation functions in [2, 3].

Suppose (X, d) is a metric space, T is a self-mapping on X and σ ∈ Σ. We
say that T is a Σ-contraction with respect to σ [2], if

σ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X. (3)

For all distinct x, y ∈ X, by (σ2), we have the inequality below

d(Tx, Ty) 6= d(x, y). (4)

Thus we deduce that whenever a Σ-contraction T in a metric space has a fixed
point, then it is necessarily unique.

Theorem 1.2. Every Σ-contraction on a complete metric space has a unique
fixed point.

If an auxiliary non-decreasing function ϑ : [0,∞)→ [0,∞) fulfils that
there exists p0 ∈ N and a ∈ (0, 1) and a convergent series of nonnegative terms
Σ∞p=1vp that

ϑp+1(s) ≤ aϑp(s) + vp, for p ≥ p0 and any s ∈ [0,∞),

then, the function ϑ is called (c)-comparison and denoted as ϑ ∈ Ψ (see e.g.
[4]).

Lemma 1.3. (see e.g [4]) If ϑ ∈ Ψ, such then the following hold:

(i) (ϑn(t))n∈N converges to 0 as n→∞ for all t ∈ (0,∞);
(ii) ϑ(s) < s, for any t ∈ (0,∞);
(iii) ϑ is continuous at 0;
(iv) the series Σ∞p=1ϑ

p(s) converges for any s ∈ (0,∞).

In what follows we recall the notion of (triangular) α-orbital admissible,
introduced by Popescu [6], that is inspired from [1].

Definition 2. [6] For a fixed mapping α : M ×M → [0,∞), we say that a
self-mapping T : M →M is an α-orbital admissible if

(O1) α(u, Tu) ≥ 1⇒ α(Tu, T 2u) ≥ 1.

Let A be the collection of all α-orbital admissible T : M →M .
In addition, T is called triangular α-orbital admissible if T is α-orbital ad-

missible and

(O2) α(u, v) ≥ 1 and α(v, Tv) ≥ 1⇒ α(u, Tv) ≥ 1.

Let O be the collection of all triangular α-orbital admissible T : M →M.

Definition 3. ([5]) For a given non empty set X, we say that a function µ :
X ×X → [0,∞) is an M -metric if

(m1) µ(x, x) = µ(y, y) = µ(x, y)⇔ x = y,
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(m2) mxy ≤ µ(x, y), where mxy := min{µ(x, x), µ(y, y)},
(m3) µ(x, y) = µ(y, x),
(m4) (µ(x, y)−mxy) ≤ (µ(x, z)−mxz) + (µ(z, y)−mzy) .

In this case, the pair (X,µ) is called an M -metric space.

In the following example we present an example of an M -metric.

Example 1.4. Let X = {a, b, c} ∪ [0,∞) with a, b, c /∈ {a, b, c}. Define

µ(a, b) = µ(b, a) = µ(a, a) = 8,

µ(a, c) = µ(c, a) = µ(c, b) = µ(b, c) = 7 µ(b, b) = 9 µ(c, c) = 5,

and µ(x, y) = |x− y| otherwise. So µ is M -metric. If D(x, y) = µ(x, y)−mx,y,
then µ(a, b) = ma,b = 8 but it means D(a, b) = 0 while a 6= b which means D is
not metric.

Remark 1. ([5]) For every x, y ∈ X
(1) 0 ≤Mxy +mxy = µ(x, x) + µ(y, y).
(2) 0 ≤Mxy −mxy = |µ(x, x)− µ(y, y)|.
(3) Mxy −mxy ≤ (Mxz −mxz) + (Mzy −mzy).

For more examples and for the topology of M -metric space, we refer for
example [5]. Like in standard metric space topology, the set

{Bµ(x, ε) : x ∈ X, ε > 0},

forms a base for the topology of M -metric µ, where where

Bµ(x, ε) = {y ∈ X : µ(x, y) < mx,y + ε},

for all x ∈ X and ε > 0.

Definition 4. ([5]) Let (X,µ) be an M -metric space and {xn} be a sequence
in (X,µ). Then,

(1) {xn} converges to a point x ∈ X if

lim
n→∞

(µ(xn, x)−mxn,x) = 0. (5)

(2) {xn} is called a m-Cauchy sequence if

lim
n,m→∞

(µ(xn, xm)−mxn,xm
) and lim

n,m→∞
(Mxn,xm

−mxn,xm
) (6)

there exist (and are finite).
(3) (X,µ) is called complete if every m-Cauchy sequence {xn} in X con-

verges to a point x ∈ X such that(
lim
n→∞

(µ(xn, x)−mxn,x) = 0 and lim
n→∞

(Mxn,x −mxn,x) = 0
)
.



562 M. ASADI, M. AZHINI, E. KARAPINAR, AND H. MONFARED

Lemma 1.5. ([5]) Suppose that xn → x and yn → y as n→∞ in an M -metric
space (X,µ). Then, we have

lim
n→∞

(µ(xn, yn)−mxn,yn) = µ(x, y)−mxy

and also
lim
n→∞

(µ(xn, y)−mxn,y) = µ(x, y)−mx,y,

for all y ∈ X. Moreover, µ(x, y) = mxy. Further if µ(x, x) = µ(y, y), then
x = y.

In this paper, we consider the existence of fixed point of certain operators,
defined via simulation function, in e very general setting, m-metric spaces.

2. Main result and fixed point theorems

We, first, define the following contractive mapping:

Definition 5. Let T be a self-mapping defined on an M -metric space (X,µ).
If there exist σ ∈ Σ and α : X ×X → [0.∞) such that

σ(α(x, y)µ(Tx, Ty), µ(x, y)) ≥ 0 for all x, y ∈ X, (7)

then we say that T is an α-admissible Σ-contraction with respect to σ.

If α(x, y) = 1, then T turns into a Σ-contraction with respect to σ.

Lemma 2.1. Let T is an α-admissible Σ-contraction with respect to σ in M -
metric space (X,µ) and x, y ∈ X such that µ(x, y) > 0 then

α(x, y)µ(Tx, Ty) < µ(x, y). (8)

Proof. Assume that x, y ∈ X such that µ(x, y) > 0. If µ(Tx, Ty) = 0, then
α(x, y)µ(Tx, Ty) = 0 < µ(x, y). Otherwise, µ(Tx, Ty) > 0. If α(x, y) = 0, then
the inequality is satisfied trivially. So assume that α(x, y) > 0 and applying
(σ2) with (7), we derive that

0 ≤ σ(α(x, y)µ(Tx, Ty), µ(x, y)) < µ(x, y)− α(x, y)µ(Tx, Ty),

so (8) holds. �

We can now state the main result of this paper.

Theorem 2.2. Let (X,µ) be a complete M -metric space and let T : X → X
be a continuous α-admissible Σ-contraction with respect to σ. If T ∈ O and
there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then there exists u ∈ X such that
Tu = u.

Proof. Due to the assumption of the theorem, there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1. Let x0 ∈ X such that α(x0, Tx0) ≥ 1. Set-up an iterative
sequence {xn} in X by letting xn+1 = Txn for all n ≥ 0. We want to prove
that µ(xn, xn+1)→ 0, as n→∞.
If µ(xn0 , xn0+1) = 0, for some n0 ∈ N, then we have µ(xn0+1, xn0+2) = 0.



SIMULATION FUNCTIONS OVER M-METRIC SPACES 563

Suppose to the contrary that µ(xn0+1, xn0+2) > 0, so by the property of T and
(σ2)

0 ≤ σ(α(xn0 , xn0+1)µ(Txn0 , Txn0+1), µ(xn0 , xn0+1))

< µ(xn0 , xn0+1)− α(xn0 , xn0+1)µ(Txn0 , Txn0+1)

= 0− α(xn0 , xn0+1)µ(Txn0 , Txn0+1).

Now since µ(xn0
, xn0+1) ≥ 1 so by inequality we obtain that µ(Txn0

, Txn0+1) <
0. Which is a contradiction, hence we have µ(xn, xn+1) = 0 for all n ≥ n0.
Consequently, we shall assume that

µ(xn, xn+1) > 0, for all n = 0, 1, 2, . . . . (9)

Regarding that T is α-admissible, we derive

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

Recursively, we obtain that

α(xn, xn+1) ≥ 1 for all n = 0, 1, . . . . (10)

From (7) and (10), it follows that for all n ≥ 1, we have

0 ≤ σ(α(xn, xn−1)µ(Txn, Txn−1), µ(xn, xn−1))

= σ(α(xn, xn−1)µ(xn+1, xn), µ(xn, xn−1))

< µ(xn, xn−1)− α(xn, xn−1)µ(xn+1, xn).

Consequently, we derive that

µ(xn, xn+1) ≤ α(xn, xn−1)µ(xn, xn+1) < µ(xn, xn−1) for all n = 1, 2, . . . .
(11)

Hence, we conclude that the sequence {µ(xn, xn−1)} is non-decreasing and
bounded from below by zero. Consequently, there exists m ≥ 0 such that
limn→∞ µ(xn, xn−1) = m ≥ 0. We shall prove that

lim
n→∞

µ(xn, xn−1) = 0. (12)

Suppose, on the contrary that m > 0. Note that from the inequality (11), we
derive that

α(xn, xn−1)µ(xn, xn+1) = m. (13)

Letting sn = α(xn, xn−1)µ(xn, xn+1) and t tn = µ(xn, xn−1) and taking (σ3 )
into account, we get that

0 ≤ lim sup
n→∞

σ(α(xn, xn−1)µ(xn+1, xn), µ(xn, xn−1)) < 0, (14)

which is a contradiction. Thus, we have m = 0. that means

lim
n→∞

µ(xn, xn−1) = 0. (15)

Now we prove that {xn} is M -Cauchy sequence in (X,µ). We have

lim
n→∞

µ(xn, xn+1) = 0,
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0 ≤ mxn,xn+1 ≤ µ(xn, xn+1)⇒ lim
n→∞

mxn,xn+1 = 0,

and

mxn,xn+1
= min{µ(xn, xn), µ(xn+1, xn+1)} ⇒ lim

n→∞
µ(xn, xn) = 0.

On the other hand

mxn,xm
= min{µ(xn, xn), µ(xm, xm)} ⇒ lim

n,m→∞
mxn,xm

= 0,

so
lim

n,m→∞
(Mxn,xm

−mxn,xm
) = 0.

We show
lim

n,m→∞
(µ(xn, xm)−mxn,xm

) = 0.

Define
M∗(x, y) := µ(x, y)−mx,y, ∀x, y ∈ X.

If limn,m→∞M∗(xn, xm) 6= 0, there exist ε > 0 and {lk} ⊂ N such that

M∗(xlk , xnk
) ≥ ε.

Suppose that k is the smallest integer which satisfies above equation such that

M∗(xlk−1, xnk
) < ε.

Now by (m4) we have

ε ≤M∗(xlk , xnk
) ≤M∗(xlk , xlk−1) +M∗(xlk−1, xnk

) < M∗(xlk , xlk−1) + ε.

Thus
lim
k→∞

M∗(xlk , xnk
) = ε,

which means
lim
k→∞

(µ(xlk , xnk
)−mxlk

,xnk
) = ε.

On the other hand
lim
k→∞

mxlk
,xnk

= 0,

so we have
lim
k→∞

µ(xlk , xnk
) = ε. (16)

Again by (m4) we have

M∗(xlk , xnk
) ≤M∗(xlk , xlk+1) +M∗(xlk+1, xnk+1) +M∗(xnk+1, xnk

),

and

M∗(xlk+1, xnk+1) ≤M∗(xlk , xlk+1) +M∗(xlk , xnk
) +M∗(xnk+1, xnk

),

taking the limit as k → +∞, together with (15) and (16) we have

lim
k→∞

µ(xlk+1, xnk+1) = ε. (17)

Particularly, there exists n1 ∈ N such that for all k ≥ n1 we have

µ(xlk , xnk
) >

ε

2
and µ(xlk+1, xnk+1) >

ε

2
> 0. (18)
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Moreover, since T is triangular α-orbital admissible, we have

α(xlk , xnk
) ≥ 1. (19)

Regarding the fact T is an α-admissible Σ-contraction with respect to σ, to-
gether with (18) and (19) we get that

0 ≤ σ(α(xlk , xnk
)µ(Txlk , Txnk

), µ(xlk , xnk
))

= σ(α(xlk , xnk
)µ(xlk+1, xnk+1), µ(xlk , xnk

))

< µ(xlk , xnk
)− α(xlk , xnk

)µ(xlk+1, xnk+1),

for all k ≥ n1. Consequently, we have

0 < µ(xlk+1, xnk+1) ≤ α(α(xlk , xnk
)µ(xlk+1, xnk+1) < µ(xlk , xnk

),

for all k ≥ n1. From above inequality, together with(16) and(17), we conclude
that sn = α(xlk , xnk

)µ(xlk+1, xnk+1) → ε as tn = µ(xlk , xnk
) → ε. On account

of the above observations and regarding the condition (σ3), we deduce that

0 ≤ lim sup
k→∞

σ(α(xlk , xnk
)µ(xlk+1, xnk+1), µ(xlk , xnk

)) < 0,

which is a contradiction, and therefore {xn} is an M -Cauchy sequence. Now by
completeness of X, xn → u, for some u ∈ X in τm topology that means,

lim
n→∞

(µ(xn, u)−mxn,u) = 0.

And

lim
n→∞

(Mxn,u −mxn,u) = 0.

But we have limn→∞mxn,u = 0, hence limn→∞ µ(xn, u) = 0 and by Remark 1

µ(u, u) = 0.

T is continuous so

lim
n→∞

(µ(Txn, Tu)−mTxn,Tu) = 0,

that means

lim
n→∞

(µ(xn+1, Tu)−mxn+1,Tu) = 0,

and similar to the above, we have limn→∞mxn+1,Tu = 0, hence limn→∞ µ(xn+1, Tu) =
0 and by Remark 1, µ(Tu, Tu) = 0. On the other hand, xn → u as n → ∞ so
by Lemma 1.5, we get

(µ(xn, Tu)−mxn,Tu)→ (µ(u, Tu)−mu,Tu) = µ(u, Tu) as n→∞,
but we have

(µ(xn, Tu)−mxn,Tu)→ 0 as n→∞.
Thus

µ(u, Tu) = 0,

therefore µ(u, Tu) = µ(Tu, Tu) = µ(u, u) = 0 and by (m1) we get

Tu = u.
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�

We say that (X,µ) is regular, if {xn} is a sequence inX such that α(xn, xn+1) ≥
1 for all n and xn → x ∈ X as n → ∞, then there exists a subsequence {xnk

}
of {xn} such that α(xnk

, x) ≥ 1 for all k.

Theorem 2.3. Let (X,µ) be a complete M -metric space and let T : X → X be
an α-admissible Σ-contraction with respect to σ. Suppose that (X,µ) is regular.
If T ∈ O and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then there exists
u ∈ X such that Tu = u.

Proof. Following the proof of Theorem 2.2, we know that the sequence {xn}
defined by xn+1 = Txn for all n ≥ 0, converges for some u ∈ X. From (10)
and (X,µ) is regular , there exists a subsequence {xnk

} of {xn} such that
α(xnk

, u) ≥ 1 for all k. Applying (7), for all k, we get that

0 ≤ σ(α(xnk
, u)µ(Txnk

, Tu), µ(xnk
, u))

= σ(α(xnk
, u)µ(xnk+1, Tu), µ(xnk

, u))

< µ(xnk
, u)− α(xnk

, u)µ(xnk+1, Tu),

which is equivalent to

0 ≤ µ(xnk+1, Tu) = µ(Txnk
, Tu) ≤ α(xnk

, u)µ(Txnk
, Tu) ≤ µ(xnk

, u). (20)

Letting k →∞ in the above equality, we have

µ(xnk+1, Tu)→ 0 as k →∞.

Therefore as in proof of Theorem 2.2 we have Tu = u. �

For the uniqueness of a fixed point of an α-admissible Σ-contraction with
respect to σ, we shall suggest the following hypothesis.
(U) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1.
Here, Fix(T ) denotes the set of fixed points of T .

Theorem 2.4. Adding condition (U) to the hypotheses of Theorem 2.2 (resp.
Theorem 2.3), we obtain that u is the unique fixed point of T .

Proof. Suppose that u, v ∈ X are two fixed points of T . we have µ(u, u) = 0,
let in a contrary µ(u, u) > 0, so by Lemma 2.1

µ(u, u) = µ(Tu, Tu) ≤ α(u, u)µ(Tu, Tu) < µ(u, u).

Which is a contradiction so we have µ(u, u) = 0. By similar way we have
µ(v, v) = 0 and µ(u, v) = 0, hence by (m1)

u = v.

�
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Example 2.5. Let X = [0, 1] and µ : X → [0,∞) defined by

µ(x, y) =
x+ y

2

be an M -metric on X, clearly (X,µ) is a complete M -metric space. Suppose
that T : X → X be a mapping defined by

Tx =
x2

3
,

we prove that T is continuous in (X,µ). Assume that x0 ∈ X and ε > 0 be
arbitrary we want to show that there exist δ > 0, such that if µ(x0, y)−µx0,y < δ,
then µ(Tx0, T y)− µTx0,Ty < ε. Let y ∈ X, and x0 > y, then Tx0 > Ty, hence
we get

µx0,y = min{µ(x0, x0), µ(y, y)} = y,

and

µTx0,Ty = min{µ(Tx0, Tx0), µ(Ty, Ty)} =
y2

3
.

So

µ(Tx0, T y)− µTx0,Ty < ε

⇒
x2
0

3 + y2

3

2
− y2

3
< ε

⇒x20 − y2

6
< ε

⇒x0 − y
6

(x0 + y) < ε,(∗)

now let δ = 1
2 and µ(x0, y)− µx0,y < δ = 1

2 , so

0 ≤ µ(x0, y)− µx0,y <
1

2

⇒0 ≤ x0 + y

2
− y < 1

2

⇒0 ≤ x0 − y
2

<
1

2
⇒0 ≤ x0 − y < 1

⇒2x0 ≥ x0 + y > −1 + 2x0.(∗∗)

By using (∗∗) in (∗) we get

x0 − y
6

< 2εx0 ⇒
x0 − y

2
< 6εx0,

hence we get

µ(x0, y)− µx0,y < 6εx0

therefore we let

δ = min{1

2
, 6εx0}.
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In similar way for x0 < y we get δ > 0 such that µ(x0, y)− µx0,y < δ. Hence T
is continuous in arbitrary x0 ∈ X. Let α : X×X → [0,∞) be a function defined
by

α(x, y) =

{
1, x, y = 0;
x+y
x2+y2 , otherwise.

Then T is an α-admissible mapping on X and T ∈ O, since for all x, y ∈ X we
have

α(x, y) ≥ 1.

Now we define σ : [0,∞)× [0,∞)→ R by

σ(t, u) =
u

2
− t.

So σ ∈ Σ. We have also α(x0, Tx0) ≥ 1, for an arbitrary x0 ∈ X, on the other
hand T is Σ-contraction with respect to σ. since for all x, y ∈ X if x, y 6= 0,

σ(α(x, y)µ(Tx, Ty), µ(x, y)) = σ(
x+ y

x2 + y2

x2

3 + y2

3

2
,
x+ y

2
)

σ(
x+ y

6
,
x+ y

2
) =

x+ y

4
− x+ y

6
≥ 0.

If x, y = 0, we have, σ(α(x, y)µ(Tx, Ty), µ(x, y)) = σ(0, 0) = 0. Hence for all
x, y ∈ X,

σ(α(x, y)µ(Tx, Ty), µ(x, y)) ≥ 0.

Hence T is satisfied in the assumptions of Theorem 2.2 with respect to the defined
functions α, σ and m as a metric on X and we have T0 = 0.

3. Consequences

In this section, we shall illustrate that several existing fixed point results in
the literature can be derived from our main results by regarding Example 1.1
and also Example 12 - Example 19 in [3].

Theorem 3.1. [1] Let T : X → X be an α − ϑ-contractive mapping where
(X, d) is a complete metric space. Suppose that T ∈ A and there exists x0 ∈ X
such that α(x0, Tx0) ≥ 1. If, either, T is continuous, or (X, d) is regular, then,
there exists u ∈ X such that Tu = u.

Theorem 3.2. Adding to the hypotheses of Theorem 3.1 the condition:
For all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1, we
obtain uniqueness of the fixed point.

We conclude that the main result of Samet et al. [1] can be expressed as a
corollary of our main result.

Theorem 3.3. Theorem 3.1 is a consequence of Theorem 2.4.
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Proof. Taking σE(t, s) = ϑ(s) − t for all s, t ∈ [0,∞), in Theorem 2.4, we get
that

α(x, y)d(Tx, Ty) ≤ ϑ(d(x, y)), for all x, y ∈ X.

We skip the details. �

Hence, all consequences, including the famous fixed point theorem of Banach,
can be expressed easily from the above theorem as in [1]. We derive that the
main result of Khojasteh et al. [2] can be expressed as a corollary of our main
result.

Theorem 3.4. Theorem 1.2 is a consequence of Theorem 2.4.

Proof. It is enough to take α(x, y) = 1 for all x, y ∈ X. �

4. Conclusion

It is clear that we can list several consequences of our main results by defining
the mapping σ in a proper way like in the Example 1.1 and examples in [3] . In
particular, we are able to get several existing fixed point theorems in the various
settings (in the context of partially ordered set endowed with a metric, in the
setting of cyclic contraction etc.) regarding Theorem ( and hence Theorem 3.1).
We omit the details since they are obvious.
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to the study of contractions in quasi-metric spaces, Discrete Dynamics in Nature and

Society 2014, Article ID 269286, 10 pages.
[4] I. A.Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca,

2001.
[5] M. Asadi, E. Karapınar, and P. Salimi, New Extension of p-Metric Spaces with Some

fixed point Results on M-metric spaces, Journal of Inequalities and Applications 2014,

2014:18.
[6] O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in

metric spaces, Fixed Point Theory Appl.2014, 2014:190
[7] S.G. Matthews, Partial metric topology, Ann. New York Acad. Sci. 728 (1994), 183–197.



570 M. ASADI, M. AZHINI, E. KARAPINAR, AND H. MONFARED

Mehdi Asadi
Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan,

Iran

E-mail address: masadi.azu@gmail.com

Mahdi Azhini

Department of Mathematics, Science and Research Branch, Islamic Azad Univer-
sity, Tehran, Iran

E-mail address: m.azhini@srbiau.ac.ir

Erdal Karapınar
Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey

E-mail address: erdalkarapinar@yahoo.com

Hossein Monfared

Department of Mathematics, Germi Branch, Islamic Azad University, Germi, Iran

E-mail address: monfared.h@gmail.com


