• Title/Summary/Keyword: Methyl ethyl ketone

Search Result 137, Processing Time 0.029 seconds

A Study on the Characteristics of Pyrolysis of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid (황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 열분해 특성에 관한 연구)

  • Jung Doo-Kyun;Choi Jae-Wook;Lee In-Sik
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-56
    • /
    • 2004
  • An experiment to examine the characteristics of pyrolysis of Methyl Ethyl Ketone Peroxide was conducted in an air-present environment, using TG-DTA. Decomposition starting temperature was decreased as the increase of 98% concentrated H₂SO₄ to the MEKPO and the maximum decomposition temperature of MEKPO was 116.8℃. The activated energy calculated from differential method of pure MEKPO, MEKPO with 1 wt%, 3wt%, and 5wt% of H₂SO₄ were 0.576㎉/mo1, 0.355㎉/㏖, 0.284㎉/㏖ and 0.258㎉/㏖ respectively.

A Study on the Explosion Pressure Behavior of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid (황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 폭발압력거동에 관한 연구)

  • Choi Jae-Wook;Jung Doo-Kyun;Choi Il-Gon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.50-54
    • /
    • 2004
  • To examine the danger of explosion caused by decomposition explosion of Methyl Ethyl Ketone Peroxide, the mini cup pressure vessel tester (MCPVT) was used in the experiment. The maximum explosion pressure increased as the amount of $98\%H_2SO_4$ added to MEKPO increased from $0\%$ to $1\%,\;3\%$, and $5\%$, and the maximum pressure rising velocity increased as well. In addition, the temperature under the pressure at which decomposition starts decreased from $168.16^{\circ}C$ to $126.76^{\circ}C,\;91.21^{\circ}C$, and $81.25^{\circ}C$ as the amount of $H_2SO_4$ added increased.

  • PDF

Dispersions of partially reduced graphene oxide in various organic solvents and polymers

  • Kim, Hye Min;Kim, Seo Gyun;Lee, Heon Sang
    • Carbon letters
    • /
    • v.23
    • /
    • pp.55-62
    • /
    • 2017
  • We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a $4.4^{\circ}C$ increase for poly(methyl methacrylate) and $3.0^{\circ}C$ increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.

Effect of Methyl Ethyl Ketone and Ethyl Acetate Vapor on Photocatalytic Decomposition of n-Pentane Vapor (n-Pentane 증기의 광촉매 분해 시 Methyl Ethyl Ketone 증기와 Ethyl Acetate 증기의 영향)

  • Kam, Sang-Kyu;Jeon, Jin-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1151-1156
    • /
    • 2014
  • The photocatalytic decomposition characteristics of single n-pentane, n-pentane mixed with methyl ethyl ketone (MEK), and n-pentane mixed with ethyl acetate (EA) by cylindrical UV reactor installed with $TiO_2$-coated perforated plane were studied. The effects of the residence time, the inlet gas concentration, and the oxygen concentration were investigated. The removal efficiency of n-pentane was increased with increasing the residence time and the oxygen concentration, but decreased with increasing the inlet concentration of n-pentane. The photocatalytic decomposition rates of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA fitted well on Langmuir-Hinshelwood kinetics equation. The maximum elimination capacities of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA were obtained to be $465g/m^3{\cdot}day$, $217g/m^3{\cdot}day$, and $320g/m^3{\cdot}day$, respectively. The presence of coexisting MEK and EA vapor had a negative effect on the photocatalytic decomposition of n-pentane and the negative effect of MEK was higher than that of EA.

Quantitative Determination of Solvents in Food Packaging Film Using Headspace Gas Chromatography (헤드스페이스 가스크로마토그라프에 의한 식품포장재 중의 잔류용제 분석연구)

  • Kim, Hyeon-Wee;Cha, Ik-Soo;Kim, Jin-Ho;Park, Ki-Moon
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1177-1179
    • /
    • 1996
  • A static headspace gas chromatographic (HSGC) technique was used to quantify toluene and other solvents (methanol, isopropyl alcohol, methyl ethyl ketone and ethyl acetate) in food packaging films. Comparison of retention times and coefficient variations for standard solvents showed consistent retention time and good reproducibility. Therefore, this method using static HSGC proved to be superior in rapidity and reproducibility, and is thought to be adaptable to analysis of a large number of samples. The methanol content was $N.D.\;(not\;detected){\sim}0.939\;mg/m^2$, toluene $N.D.{\sim}1.403\;mg/m^2$, melthyl ethyl ketone $N.D.{\sim}0.932\;mg/m^2$, total solvent content was $N.D.{\sim}2.433\;mg/m^2$.

  • PDF

Degradation Characteristics of Methyl Ethyl Ketone and Methyl Isobuthyl Ketone by Pseudomonas putida KT-3. (Pseudomonas putida KT-3의 Methyl Ethyl Ketone 및 Methyl Isobuthyl Ketone 분해 특성)

  • 김민주;이태호;이경미;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.395-401
    • /
    • 2002
  • Methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) have been widely used as solvents in various industries. Biodegradation of MEK and MIBK by Pseudomonas putida KT-3, which could utilize MEK or MIBK as a sole carbon source, was characterized, and the cosubstrate interaction in MEK/MIBK mixture was also studied. Within the range of initial MEK concentration (from 0.5 to 5.5 mM), an increased substrate concentration increased the specific degradation rate of MEK by P putida KT-3 (from 3.15 to 10.58 mmol/g DCW$\cdot$h), but the rate sightly increased at 11.0 mM of initial MEK concentation (11.28 mmol/g DCW$\cdot$h). The similar degradation rates of MIBK (4.69-4.92 mmol/g DCW$\cdot$h) were obtained at more than 3.0 mM of initial MIBK concentation. Kinetic analysis on the degradation of MEK/MIBK mixture by P. putida KT-3 showed that MEK or MIBK acted as a competitive inhibitor. Maximum degradation rate ($V_{max}$), saturation constant ($K_{m}$) and inhibition constant ($K_{1}$) were as follows: $V_{max,MEK}$=12.94 mmol/g DCW$\cdot$h; $K_{m,MEK}$=1.72 mmol/L; $K_{l,MEK}$=1.30 mmol/L; $V_{max,MIBK}$=5.00 mmol/g-DCW$\cdot$h; $K_{m,MIBK}$=0.42 mmol/L; $K_{l,MEK}$=0.77 mmol/L.

Simulation Study of Methyl ethyl ketone-Cyclohexane Azeotrope on the Pressure-Swing Distillation (압력변환 증류공정을 이용한 Methyl Ethyl Ketone-Cyclohexane 공비혼합물의 전산모사)

  • Park, Hoey Kyung;Ahn, June-shu;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.708-715
    • /
    • 2016
  • The modelling and optimization of Methyl Ethyl Ketone (MEK)-Cyclohexane (CH) separation process were performed using pressure-swing distillation with a low-high pressure column and a high-low pressure column configuration. The optimization was performed for the number of theoretical stages, and the location of the feed tray of low column and high column to obtain high-purity MEK at the top. The total reboiler heat duty at the low-high pressure column configuration and high-low pressure column configuration were at 11.7667 Mkcal/h and at 10.3484 Mkcal/h, respectively. The results showed that total reboiler heat duty could be reduced to 12.05% using a high-low pressure column configuration.

Simulation and Optimization Study on the Pressure Swing Distillation of Methyl ethyl ketone-Water System (Methyl ethyl ketone과 물 이성분계 혼합물의 압력변환 증류공정에 대한 전산모사 및 최적화에 대한 연구)

  • Noh, Sang-Gyun;Rho, Jae-Hyun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3764-3773
    • /
    • 2012
  • In this study, modeling and optimization works were completed for the separation of 99.9 mol% of methyl ethyl ketone from water through a pressure-swing distillation process since the azeotropic composition varies very sensitively with the change of system pressure. PRO/II with PROVISION release 9.1 was used for the computer simulation and Wilson activity coefficient model was chosen as a modeling equation. A pressure-swing distillation process can be classified into a low-high pressure columns configuration and a high-low pressure columns configuration. In this work, each configurations were optimized for the minimization of steam consumptions, respectively and were compared.

A Study on Risk Assessment of Methyl Ethyl Ketone Peroxide (메틸에틸케톤 퍼옥사이드의 위험성평가에 관한 연구)

  • Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.34-39
    • /
    • 2005
  • To evaluate characteristics of explosion hazard of Methyl Ethyl Ketone Peroxide, MCPVT was used for this study. In result maximum explosion pressure and maximum explosion pressure rising velocity of MEK-PO were $12.1kgf/cm^2\;and\;106.81kgf/cm^2/s$. As a result or adding metal powder to estimate hazard of explosion, the maximum explosion pressure and maximum explosion pressure rising velocity according to adding Fe powder in MEK-PO increased. In opposite, those decreased resulting in adding Ca powder in MEK-PO.

Adsorption Mechanism of Alkyl Ketones on Cation Supported by Layer Silicate. Link Formation of Hydroxyl Group (Layer Silicate에 지지된 양이온상에서 일어나는 Alkyl Ketones의 흡착기구. 水酸基의 Link 形成理論)

  • Jong Taik Kim;Jong Rack Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 1973
  • The self supported film specimen of Wyoming montmorillonite as a layer silicate saturated by cations,$Li^{+},\;Na^{+},\;K^{+},\;Ca^{2+},\;Ni^{2+},\;Al^{3+}$and$F^{3+}$ were allowed to contact acetone, methyl-ethyl ketone and diethyl ketone within the heatable gas cell. The i.r. spectra between $4000{\sim}1200cm^{-1}$ at different pressures of adsorbates indicated bond formation through carbonyl oxygen. Two types of carbonyl bond shift with maxima at $1713cm^{-1}$ and $1690cm^{-1}$ are attributed as coordinate bond formation of carbonyl with either surface hydroxyl or cationic hydroxyl group. The intensity of the vOH was analyzed and resonance form of cationic hydroxyl was proposed as an adsorption site. The tendency to form coordinate bond was in good agreement with calculated formal charge of carbonyl oxygen in an increasing order, acetone < methyl-ethyl ketone < diethyl ketone. As an additional mechanism of adsorption, weak hydrogen bonding of methyl hydrogen with surface oxygen was observed.

  • PDF