DOI QR코드

DOI QR Code

Simulation and Optimization Study on the Pressure Swing Distillation of Methyl ethyl ketone-Water System

Methyl ethyl ketone과 물 이성분계 혼합물의 압력변환 증류공정에 대한 전산모사 및 최적화에 대한 연구

  • Noh, Sang-Gyun (Department of Chemical & Biomolecular Engineering, Dong Yang University) ;
  • Rho, Jae-Hyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jung-Ho (Department of Chemical Engineering, Kong Ju National University)
  • 노상균 (동양대학교 생명화학공학과) ;
  • 노재현 (공주대학교 화학공학부) ;
  • 조정호 (공주대학교 화학공학부)
  • Received : 2012.07.11
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

In this study, modeling and optimization works were completed for the separation of 99.9 mol% of methyl ethyl ketone from water through a pressure-swing distillation process since the azeotropic composition varies very sensitively with the change of system pressure. PRO/II with PROVISION release 9.1 was used for the computer simulation and Wilson activity coefficient model was chosen as a modeling equation. A pressure-swing distillation process can be classified into a low-high pressure columns configuration and a high-low pressure columns configuration. In this work, each configurations were optimized for the minimization of steam consumptions, respectively and were compared.

본 연구에서는 methyl ethyl ketone (MEK)와 물의 이성분계 공비 혼합물의 공비조성이 압력에 따라서 민감하게 변하는 현상을 이용하여 압력변환 증류(pressure-swing distillation; PSD)공정을 통해서 순도가 99.9mole% 이상의 MEK를 분리해 내기 위한 전산모사 및 공정 최적화를 수행하였다. 전산모사를 위하여 상용성 화학공정 모사기인 Invensys사의 PRO/II with PROVISION 9.1을 활용하였고, 열역학 모델식으로는 Wilson 액체 활동도계수 모델식을 활용하였다. PSD 공정은 저압 및 고압의 증류탑 2기의 증류탑 배열을 사용하는데 저압 증류탑을 전단에 두는 저압-고압 증류탑 배열과 저압 증류탑을 후단에 두는 고압-저압 증류탑 배열로 분류할 수 있다. 본 연구에서는 각각의 배열에 대한 증류탑 환류비와 원료 주입단의 위치를 조절변수로 하여 총 재비기의 heat duty의 합을 최소화시킨 후 두 공정배열을 서로 비교하였다.

Keywords

References

  1. Ahn, H, S., Oh, J, Y., Lee, S, B., and Lee, Y, T., "Mass Transfer Coefficient on Membrane Contactor System for Separation of MEK from its Aqueous Solution: Experimental and Theoretical Aspects", Hwahak Konghak, Vol. 41, No. 3, pp. 292-300, 2003.
  2. Cho, T. H., Ochi, K., Kojima, K., "Measureme-nt of vapor- liquid equilibrium for systems with limited miscibility", Fluid Phase Equilib., Vol. 11, No. 2, pp. 137-152, 1983. https://doi.org/10.1016/0378-3812(83)80054-5
  3. Kim, H. K., Lee, J. S., Han, J., Nah, B. K., Jung, Y. S. and Song, H.K., "A Theoretical Study on MEK-Water Separation by Azeotropic Distillation," Hwahak Konghak, Vol. 33, No. 2, pp. 213-224, 1995.
  4. Kim, H. K., Kim, S. H., Han, J., Nah, B. K., Jung, Y. S. and Song, H. K., "A Theoretical Study on the Separation of MEK from MEK-Water-Toluene Mixture by Azeotropic Distillation," Hwahak Konghak, Vol. 34, No. 2, pp. 201-207, 1996.
  5. William, L. L., and Chien, L. I., "Design and control of distillation systems for separating azeotropes", A John Wiley & Sons, INC., Publication, pp. 371-374, 2010.
  6. Soave, G., "Equilibrium constants from a modified Redlich-Kwong equation of state", Chem. Eng. Sci., Vol. 27, No. 6, pp. 197-1203, 1972.
  7. Peng, D. Y., and Robinson, D. B., "A New Two-constant Equation of State for Fluids and Fluid Mixtures", Ind. Eng. Chem. Fundam., Vol. 15, No. 1, pp. 58-64, 1976.
  8. Wilson, G. M., "Vapor-Liquid Equilibrium XI. A New Expression for the Excess Free Energy of Mixing", J. Amer. Chem. Soc., Vol. 86, No. 2, pp. 127-130, 1964. https://doi.org/10.1021/ja01056a002
  9. Renon, H. and Prausnits, J. M., "Local Composition in Thermodynamic Excess Functions for Liquid Mixtures", AIChE J., Vol. 14, No. 1, pp. 135-144, 1968. https://doi.org/10.1002/aic.690140124
  10. Othmer, D. F., Chudgar, M. M. and Levy, S. L.. "Composition of vapours from boiling binary solutions: binary and ternary systems of acetone, methyl ethyl ketone and water". lnd. Eng. Chem.. Vol. 44, No. 8, pp. 1872-1881, 1952.