DOI QR코드

DOI QR Code

Dispersions of partially reduced graphene oxide in various organic solvents and polymers

  • Kim, Hye Min (Department of Chemical Engineering, Donga-A University) ;
  • Kim, Seo Gyun (Department of Chemical Engineering, Donga-A University) ;
  • Lee, Heon Sang (Department of Chemical Engineering, Donga-A University)
  • Received : 2017.05.10
  • Accepted : 2017.05.24
  • Published : 2017.07.31

Abstract

We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a $4.4^{\circ}C$ increase for poly(methyl methacrylate) and $3.0^{\circ}C$ increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.

Keywords

References

  1. Brodie BC. On the atomic weight of graphite. Phil Trans R Soc Lond, 149, 249 (1859). https://doi.org/10.1098/rstl.1859.0013.
  2. Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877.
  3. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). https://doi.org/10.1038/nmat1849.
  4. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). https://doi.org/10.1038/nature06016.
  5. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ ma100572e.
  6. Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). https://doi.org/10.5714/cl.2015.16.1.034.
  7. Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films, 519, 7766 (2011). https://doi.org/10.1016/j. tsf.2011.06.016.
  8. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). https://doi. org/10.1021/nl801457b.
  9. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi. org/10.1126/science.1102896.
  10. Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2008). https://doi.org/10.1021/nl072838r.
  11. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ann JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719.
  12. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). https://doi.org/10.1038/ nmat1967.
  13. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett, 8, 3137 (2008). https://doi.org/10.1021/nl8013007.
  14. Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci, 35, 52 (2010). http://doi.org/10.1080/10408430903505036.
  15. He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett, 287, 53 (1998). https://doi. org/10.1016/S0009-2614(98)00144-4.
  16. Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide. J Am Chem Soc, 130, 10697 (2008). https://doi.org/10.1021/ ja8021686.
  17. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 321, 1815 (2008). https://doi. org/10.1126/science.1162369.
  18. Lee BS, Lee Y, Hwang JY, Choi YC. Structural properties of reduced graphene oxides prepared using various reducing agents. Carbon Lett, 16, 255 (2015). https://doi.org/10.5714/CL.2015.16.4.255.
  19. Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C, 114, 832 (2010). https://doi.org/10.1021/jp909284g.
  20. Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). https://doi.org/10.1021/nl080604h.
  21. Hofmann U, Frenzel A. Die Reduktion von Graphitoxyd mit Schwefelwasserstoff. Kolloid-Zeitschrift, 68, 149 (1934). https:// doi.org/10.1007/BF01451376.
  22. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). https://doi.org/10.1021/jp710931h.
  23. Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686 (2010). https://doi. org/10.1016/j.carbon.2009.12.063.
  24. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). https://doi.org/10.1021/cm0630800.
  25. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 4, 3845 (2010). https://doi.org/10.1021/nn100511a.
  26. Williams G, Seger B, Kamat PV. $TiO_2$-grphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). https://doi.org/10.1021/nn800251f.
  27. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451.
  28. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). https://doi.org/10.1038/nnano.2008.215.
  29. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). https://doi.org/10.1021/nl080649i.
  30. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR. High-yield organic dispersion of unfunctionalized graphene. Nano Lett, 9, 3460 (2009). https://doi.org/10.1021/nl9016623.
  31. O'Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN. Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C, 115, 5422 (2011). https://doi.org/10.1021/ jp110942e.
  32. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560 (2008). https://doi.org/10.1021/la801744a.
  33. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9, 1593 (2009). https:// doi.org/10.1021/nl803798y.
  34. Johnson DW, Dobson BP, Coleman KS. A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci, 20, 367 (2015). https://doi.org/10.1016/j.cocis.2015.11.004.
  35. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular- level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). https://doi.org/10.1002/adfm.200801776
  36. Yadav SK, Jung YC, Kim JH, Ko YI, Ryu HJ, Yadav MK, Kim YA, Cho JW. Mechanically robust, electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Part Part Syst Charact, 30, 721 (2013). https://doi.org/10.1002/ ppsc.201300044.
  37. Noh YJ, Joh HI, Yu J, Hwang SH, Lee S, Lee CH, Kim SY, Youn JR. Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci Rep, 5, 9141 (2015). https://doi.org/10.1038/srep09141.
  38. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 11, 771 (1999). https://doi. org/10.1021/cm981085u.
  39. Wang H, Hu YH. Effect of oxygen content on structures of graphite oxides. Ind Eng Chem Res, 50, 6132 (2011). https://doi. org/10.1021/ie102572q.
  40. Lotya M, King PJ, Khan U, De S, Coleman JN. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4, 3155 (2010). https://doi.org/10.1021/nn1005304.
  41. Kim SG, Lee SS, Lee E, Yoon J, Lee HS. Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity. RSC Adv, 5, 102567 (2015). https://doi.org/10.1039/c5ra18446k.
  42. Zhang X, Coleman AC, Katsonis N, Browne WR, van Wees BJ, Feringa BL. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun, 46, 7539 (2010). https:// doi.org/10.1039/C0CC02688C.
  43. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. Graphene oxide sheets at interfaces. J Am Chem Soc, 132, 8180 (2010). https://doi.org/10.1021/ja102777p.
  44. Lee HS, Yun CH. Translational and rotational diffusions of multiwalled carbon nanotubes with static bending. J Phys Chem C, 112, 10653 (2008). https://doi.org/10.1021/jp803363j.
  45. Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys, 57, 4814 (1972). https://doi.org/10.1063/1.1678153.
  46. Berne B, Pecora R. Dynamic Light Scattering, Wiley, New York, 114 (1976).
  47. Cush R, Russo PS, Kucukyavuz Z, Bu Z, Neau D, Shih D, Kucukyavuz S, Ricks H. Rotational and translational diffusion of a rodlike virus in random coil polymer solutions. Macromolecules, 30, 4920 (1997). https://doi.org/10.1021/ma970032f.
  48. Hansen CM. Hansen Solubility Parameters: A User's Handbook, Taylor & Francis, Boca Raton, 1 (2007).