Browse > Article
http://dx.doi.org/10.5714/CL.2017.23.055

Dispersions of partially reduced graphene oxide in various organic solvents and polymers  

Kim, Hye Min (Department of Chemical Engineering, Donga-A University)
Kim, Seo Gyun (Department of Chemical Engineering, Donga-A University)
Lee, Heon Sang (Department of Chemical Engineering, Donga-A University)
Publication Information
Carbon letters / v.23, no., 2017 , pp. 55-62 More about this Journal
Abstract
We report on the dispersion state of partially reduced graphene oxide (PRGO) in organic solvents, namely methyl ethyl ketone, ethyl acetate, methylene chloride, toluene, and xylene, by controlling the carbon to oxygen (C/O) atomic ratio of the PRGOs. A two-phase solvent exchange method is also proposed to transfer PRGO from water to an aprotic solvent, such as methyl ethyl ketone. We achieve relatively good dispersion in aprotic and non-polar solvents by controlling the C/O atomic ratio of the PRGOs and applying the two-phase solvent exchange method. There is an increase in the glass transition temperatures with the dispersion of PRGOs into amorphous polymers, in particular a $4.4^{\circ}C$ increase for poly(methyl methacrylate) and $3.0^{\circ}C$ increase for polycarbonate. Good dispersion of PRGO in a nonpolar polymer, such as linear low density polyethylene, is also obtained.
Keywords
graphene oxide; organic solvent; dispersion; methyl ethyl ketone; polymers;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Geim AK. Graphene: status and prospects. Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877.   DOI
2 Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). https://doi.org/10.1038/nmat1849.   DOI
3 Wang H, Hu YH. Effect of oxygen content on structures of graphite oxides. Ind Eng Chem Res, 50, 6132 (2011). https://doi. org/10.1021/ie102572q.   DOI
4 Lotya M, King PJ, Khan U, De S, Coleman JN. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano, 4, 3155 (2010). https://doi.org/10.1021/nn1005304.   DOI
5 Kim SG, Lee SS, Lee E, Yoon J, Lee HS. Kinetics of hydrazine reduction of thin films of graphene oxide and the determination of activation energy by the measurement of electrical conductivity. RSC Adv, 5, 102567 (2015). https://doi.org/10.1039/c5ra18446k.   DOI
6 Zhang X, Coleman AC, Katsonis N, Browne WR, van Wees BJ, Feringa BL. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun, 46, 7539 (2010). https:// doi.org/10.1039/C0CC02688C.   DOI
7 Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. Graphene oxide sheets at interfaces. J Am Chem Soc, 132, 8180 (2010). https://doi.org/10.1021/ja102777p.   DOI
8 Lee HS, Yun CH. Translational and rotational diffusions of multiwalled carbon nanotubes with static bending. J Phys Chem C, 112, 10653 (2008). https://doi.org/10.1021/jp803363j.   DOI
9 Koppel DE. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys, 57, 4814 (1972). https://doi.org/10.1063/1.1678153.   DOI
10 Berne B, Pecora R. Dynamic Light Scattering, Wiley, New York, 114 (1976).
11 Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). https://doi. org/10.1021/nl801457b.   DOI
12 Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett, 8, 3137 (2008). https://doi.org/10.1021/nl8013007.   DOI
13 Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). https://doi.org/10.1038/nature06016.   DOI
14 Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ ma100572e.   DOI
15 Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). https://doi.org/10.5714/cl.2015.16.1.034.   DOI
16 Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films, 519, 7766 (2011). https://doi.org/10.1016/j. tsf.2011.06.016.   DOI
17 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi. org/10.1126/science.1102896.   DOI
18 Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 8, 323 (2008). https://doi.org/10.1021/nl072838r.   DOI
19 He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett, 287, 53 (1998). https://doi. org/10.1016/S0009-2614(98)00144-4.   DOI
20 Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci, 35, 52 (2010). http://doi.org/10.1080/10408430903505036.   DOI
21 Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide. J Am Chem Soc, 130, 10697 (2008). https://doi.org/10.1021/ ja8021686.   DOI
22 Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 321, 1815 (2008). https://doi. org/10.1126/science.1162369.   DOI
23 Lee BS, Lee Y, Hwang JY, Choi YC. Structural properties of reduced graphene oxides prepared using various reducing agents. Carbon Lett, 16, 255 (2015). https://doi.org/10.5714/CL.2015.16.4.255.   DOI
24 Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C, 114, 832 (2010). https://doi.org/10.1021/jp909284g.   DOI
25 Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). https://doi.org/10.1021/nl080604h.   DOI
26 Hofmann U, Frenzel A. Die Reduktion von Graphitoxyd mit Schwefelwasserstoff. Kolloid-Zeitschrift, 68, 149 (1934). https:// doi.org/10.1007/BF01451376.   DOI
27 Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). https://doi.org/10.1021/jp710931h.   DOI
28 Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686 (2010). https://doi. org/10.1016/j.carbon.2009.12.063.   DOI
29 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ann JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719.   DOI
30 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). https://doi.org/10.1038/ nmat1967.   DOI
31 Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451.   DOI
32 McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater, 19, 4396 (2007). https://doi.org/10.1021/cm0630800.   DOI
33 Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 4, 3845 (2010). https://doi.org/10.1021/nn100511a.   DOI
34 Williams G, Seger B, Kamat PV. $TiO_2$-grphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). https://doi.org/10.1021/nn800251f.   DOI
35 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc- Govern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). https://doi.org/10.1038/nnano.2008.215.   DOI
36 Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS. Graphene-based liquid crystal device. Nano Lett, 8, 1704 (2008). https://doi.org/10.1021/nl080649i.   DOI
37 Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR. High-yield organic dispersion of unfunctionalized graphene. Nano Lett, 9, 3460 (2009). https://doi.org/10.1021/nl9016623.   DOI
38 O'Neill A, Khan U, Nirmalraj PN, Boland J, Coleman JN. Graphene dispersion and exfoliation in low boiling point solvents. J Phys Chem C, 115, 5422 (2011). https://doi.org/10.1021/ jp110942e.   DOI
39 Cush R, Russo PS, Kucukyavuz Z, Bu Z, Neau D, Shih D, Kucukyavuz S, Ricks H. Rotational and translational diffusion of a rodlike virus in random coil polymer solutions. Macromolecules, 30, 4920 (1997). https://doi.org/10.1021/ma970032f.   DOI
40 Hansen CM. Hansen Solubility Parameters: A User's Handbook, Taylor & Francis, Boca Raton, 1 (2007).
41 Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560 (2008). https://doi.org/10.1021/la801744a.   DOI
42 Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9, 1593 (2009). https:// doi.org/10.1021/nl803798y.   DOI
43 Johnson DW, Dobson BP, Coleman KS. A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci, 20, 367 (2015). https://doi.org/10.1016/j.cocis.2015.11.004.   DOI
44 Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular- level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). https://doi.org/10.1002/adfm.200801776   DOI
45 Yadav SK, Jung YC, Kim JH, Ko YI, Ryu HJ, Yadav MK, Kim YA, Cho JW. Mechanically robust, electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Part Part Syst Charact, 30, 721 (2013). https://doi.org/10.1002/ ppsc.201300044.   DOI
46 Noh YJ, Joh HI, Yu J, Hwang SH, Lee S, Lee CH, Kim SY, Youn JR. Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci Rep, 5, 9141 (2015). https://doi.org/10.1038/srep09141.   DOI
47 Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 11, 771 (1999). https://doi. org/10.1021/cm981085u.   DOI
48 Brodie BC. On the atomic weight of graphite. Phil Trans R Soc Lond, 149, 249 (1859). https://doi.org/10.1098/rstl.1859.0013.   DOI