• 제목/요약/키워드: Methane fermentation

검색결과 251건 처리시간 0.026초

발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro (Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract)

  • ;송재용;이기환;김수연;강주희;이상무;최영민;조상범;배귀석;장문백;김은중
    • 한국유기농업학회지
    • /
    • 제24권4호
    • /
    • pp.735-746
    • /
    • 2016
  • This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin;Sanjorjo, Rey Anthony;Kwon, Moonhyuk;Kim, Seon-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2022
  • Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

Effect of Different Levels of Rumensin in Diet on Rumen Fermentation, Nutrient Digestibility and Methane Production in Cattle

  • Singh, G.P.;Mohini, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1215-1221
    • /
    • 1999
  • Twelve rumen fistulated cross-bred calves were divided into three groups and fed wheat straw and concentrate mixture according to their maintenance requirement. Animals in group II and III were fed 50 and 100mg rumensin per day, in addition to basal feed. Supplementation of rumensin in the diet decreased the dry matter intake significantly (p<0.05) along with a significant decrease in the straw intake. Digestibility coefficients of all the nutrients were not affected significantly except that of CF digestibility which was lower (p<0.05) in groups II and III as compared to group I. Among N-parameters in the rumen fluid, mean $NH_3-N$ was significantly lower in groups II and III (19.13 and 18.63 mg N/100 ml respectively) than in group I (22.68); total-N and TCA-ppt-N did not differ among the three groups. Total VFA concentration did also not differ among the three groups, however, propionate increased from 24.33 molar % to 32.73 while acetate and butyrate decreased respectively from 65.85 to 58.81% and 9.79 to 8.46%. Total VFA, bacteria and protozoa production rates were not affected significantly due to rumensin in diet. Methane production per kg DDM as well as % of methane in total gas were reduced at both the levels of rumensin on different concentrate ratios with wheat straw as roughage. Similar trend was also observed with rice straw and concentrate mixture as substrate with rumensin addition.

백하수오 추출물이 In vitro 반추위 발효성상 및 메탄가스 생성에 미치는 영향 (Effects of Cynanchum Wilfordii Extract on In vitro Ruminal Fermentation Characteristics and Methane Production)

  • 양승학;임정수;김별;황옥화;조성백;최동윤;최석근;황성구
    • 한국축산시설환경학회지
    • /
    • 제19권2호
    • /
    • pp.155-162
    • /
    • 2013
  • The objective of this study is to investigate the effects of Cynanchum wilfordii (CW) on cell viability, anti-oxidant activity, volatile fatty acid (VFA) production and methane gas production. Collected rumen fluid incubated with CW powder (1% w/v) for 12 and 24 hours were analyzed for pH, VFAs and methane. Alamar blue assay showed no significant difference on the viability of 3T3-L1 and C2C12 cells treated with CW for 24 hours. TBARS data showed a dose dependent increase on the antioxidant activity of CW. VFAs increased in the CW-treated groups compared to the control group. In addition, propionate increased more than other VFAs by the treatment with CW. There was a significant decrease in methane gas production in batch culture treated with CW in 12hrs. In conclusion, it was suggested that Cynanchum wilfordii could manipulate rumen fermentation considered by increasing VFA production and inhibition of methanogenesis.

Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls

  • Matra, Maharach;Totakul, Pajaree;Viennasay, Bounnaxay;Phesatcha, Burarat;Wanapat, Metha
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.594-602
    • /
    • 2021
  • Objective: An experiment was conducted to assess the effect of dragon fruit peel pellet (DFPP) as a rumen enhancer of dry matter consumption, nutrient digestibilities, ruminal ecology, microbial protein synthesis and rumimal methane production in Holstein crossbred bulls. Methods: Four animals, with an average live-weight of 200±20 kg were randomly assigned in a 4×4 Latin square design to investigate the influence of DFPP supplementation. There were four different dietary treatments: without DFPP, and with 200, 300, and 400 g/h/d, respectively. Results: Results revealed that dry matter consumption of total intake, rice straw and concentrate were not significantly different among treatments (p>0.05). It was also found that ruminal pH was not different among treatments (p>0.05), whilst protozoal group was reduced when DFPP increased (p<0.01). Blood urea nitrogen and NH3-N concentrations were increased at 400 g of DFPP supplementation (p<0.01). Additionally, volatile fatty acid production of propionate was significantly enhanced by the DFPP supplementation (p<0.05), while production of methane was consequently decreased (p<0.05). Furthermore, microbial protein synthesis and urinary purine derivatives were remarkably increased especially at 400 g of DFPP supplementation (p<0.05). Conclusion: Plant secondary compounds or phytonutrients (PTN) containing saponins (SP) and condensed tannins (CT) have been reported to influence rumen fermentation. DFPP contains both CT and SP as a PTN. The addition of 400 g of DFPP resulted in improved rumen fermentation end-products especially propionate (C3) and microbial protein synthesis. Therefore, DFPP is a promising rumen enhancer and indicated a significant potential of DFPP as feedstuff for ruminant feed to mitigate rumen methane production.

Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage

  • Pineiro-Vazquez, Angel T.;Canul-Solis, Jorge R.;Jimenez-Ferrer, Guillermo O.;Alayon-Gamboa, Jose A.;Chay-Canul, Alfonso J.;Ayala-Burgos, Armin J.;Aguilar-Perez, Carlos F.;Ku-Vera, Juan C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1738-1746
    • /
    • 2018
  • Objective: The aim of the experiment was to assess the effect of increasing amounts of Leucaena leucocephala forage on dry matter intake (DMI), organic matter intake (OMI), enteric methane production, rumen fermentation pattern and protozoa population in cattle fed Pennisetum purpureum and housed in respiration chambers. Methods: Five crossbred heifers (Bos taurus${\times}$Bos indicus) (BW: $295{\pm}6kg$) were fed chopped P. purpureum grass and increasing levels of L. leucocephala (0%, 20%, 40%, 60%, and 80% of dry matter [DM]) in a $5{\times}5$ Latin square design. Results: The voluntary intake and methane production were measured for 23 h per day in respiration chambers; molar proportions of volatile fatty acids (VFAs) were determined at 6 h postprandial period. Molar concentration of VFAs in rumen liquor were similar (p>0.05) between treatments. However, methane production decreased linearly (p<0.005), recording a maximum reduction of up to ~61% with 80% of DM incorporation of L. leucocephala in the ration and no changes (p>0.05) in rumen protozoa population were found. Conclusion: Inclusion of 80% of L. leucocephala in the diet of heifers fed low-quality tropical forages has the capacity to reduce up to 61.3% enteric methane emission without affecting DMI, OMI, and protozoa population in rumen liquor.

Effects of Candida norvegensis Live Cells on In vitro Oat Straw Rumen Fermentation

  • Ruiz, Oscar;Castillo, Yamicela;Arzola, Claudio;Burrola, Eduviges;Salinas, Jaime;Corral, Agustin;Hume, Michael E.;Murillo, Manuel;Itza, Mateo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.211-218
    • /
    • 2016
  • This study evaluated the effect of Candida norvegensis (C. norvegensis) viable yeast culture on in vitro ruminal fermentation of oat straw. Ruminal fluid was mixed with buffer solution (1:2) and anaerobically incubated with or without yeast at $39^{\circ}C$ for 0, 4, 8, 16, and 24 h. A fully randomized design was used. There was a decrease in lactic acid (quadratic, p = 0.01), pH, (quadratic, p = 0.02), and yeasts counts (linear, p<0.01) across fermentation times. However, in vitro dry matter disappearance (IVDMD) and ammonia-N increased across fermentation times (quadratic; p<0.01 and p<0.02, respectively). Addition of yeast cells caused a decrease in pH values compared over all fermentation times (p<0.01), and lactic acid decreased at 12 h (p = 0.05). Meanwhile, yeast counts increased (p = 0.01) at 12 h. C. norvegensis increased ammonia-N at 4, 8, 12, and 24 h (p<0.01), and IVDMD of oat straw increased at 8, 12, and 24 h (p<0.01) of fermentation. Yeast cells increased acetate (p<0.01), propionate (p<0.03), and butyrate (p<0.03) at 8 h, while valeriate and isovaleriate increased at 8, 12, and 24 h (p<0.01). The yeast did not affect cellulolytic bacteria (p = 0.05), but cellulolytic fungi increased at 4 and 8 h (p<0.01), whereas production of methane decreased (p<0.01) at 8 h. It is concluded that addition of C. norvegensis to in vitro oat straw fermentation increased ruminal fermentation parameters as well as microbial growth with reduction of methane production. Additionally, yeast inoculum also improved IVDMD.

Assessment of Greenhouse Gas Emissions from Poultry Enteric Fermentation

  • Wang, Shu-Yin;Huang, Da-Ji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.873-878
    • /
    • 2005
  • Emissions of nitrous oxide (N$_2$O) and methane (CH$_4$) from poultry enteric fermentation were investigated using a respiration chamber. Birds were placed in a respiration chamber for certain intervals during their growing period or for the whole life cycle. The accumulated gas inside the chamber was sampled and analyzed for N$_2$O and CH$_4$ production. A curve for gas production during a life cycle was fitted. The calculated area under the curve estimated the emission factor of poultry enteric fermentation on a life cycle basis (mg bird$^{-1}$ life cycle$^{-1}$). This method can be used to estimate CH$_4$ or N$_2$O emissions from different types of avian species taking into account factors such as diet, season or thermal effects. The CH$_4$/N$_2$O emission factors estimated for commercial broiler chickens, Taiwan country chickens and White Roman Geese were 15.87/0.03, 84.8/16.4 and 1,500/49 (mg bird$^{-1}$ life cycle$^{-1}$), respectively, while the calculated CH$_4$/N$_2$O emission from enteric fermentations were 3.03/0.006, 14.73/2.84 and 9.5/0.31 (Mg year$^{-1}$), respectively in Taiwan in the year of 2000. The described method is applicable to most poultry species and the reported emission factors were applicable to meat type poultry only.

혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響) (Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters)

  • 장덕;정태학
    • 대한토목학회논문집
    • /
    • 제8권4호
    • /
    • pp.59-67
    • /
    • 1988
  • 혐기성소화(嫌氣性消化)에 미치는 온도(溫度)의 영향(影響)을 가장 효과적으로 파악할 수 있는 체류시간(滯留時間) 5일(日)에서 인공(人工)슬러지를 대상으로 $35{\sim}55^{\circ}C$의 소화실험(消化實驗)을 행하였다. 소화온도증가(消化溫度增加)에 따라 메탄발효(醱酵)의 저해(沮害)가 감소하여, 중온(中溫) 및 중간영역(中間領域)의 온도(溫度)에서는 잔발효(酸醱酵)가 우세하였으나 $55^{\circ}C$에서는 활발한 메탄발효(醱酵)가 이루어졌다. 온도(溫度)의 변화(變化)는 미생물활성(微生物活性)뿐 아니라 슬러지의 물리(物理), 화학적(化學的) 특성(特性)에도 영향(影響)을 미친다고 추정된다. 또한 유입(流入) 슬러지의 희석(稀釋)에 의하여 소화저해(消化沮害)가 크게 감소하여 모든 온도(溫度)에서 활발한 메탄발효(醱酵)가 가능하였다. 소화효율(消化效率)은 수리학적(水理學的) 부하량외(負荷量外)에 유기물부하량(有機物負荷量)에도 지배받음을 알 수 있었다. 소화효율(消化效率)의 급격한 저해(沮害)가 발생된다고 보고된 $40{\sim}45^{\circ}C$에서도 뚜렷한 저해(沮害)는 없었다. 한편 소화온도증가(消化溫度增加)에 따라 소화(消化)슬러지의 침강특성(沈降特性)도 향상되었다.

  • PDF

Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission

  • Biswas, Ashraf A.;Lee, Sung Sill;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon-Jae;Bae, Gui-Seck;Lee, Kichoon;Sung, Ha-Guyn;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1601-1607
    • /
    • 2016
  • This study was conducted to determine the effect of lysozyme addition on in vitro rumen fermentation and to identify the lysozyme inclusion rate for abating methane ($CH_4$) production. An in vitro ruminal fermentation technique was done using a commercial concentrate to rice straw ratio of 8:2 as substrate. The following treatments were applied wherein lysozyme was added into 1 mg dry matter substrate at different levels of inclusion: Without lysozyme, 2,000, 4,000, and 8,000 U lysozyme. Results revealed that, lysozyme addition had a significant effect on pH after 24 h of incubation, with the highest pH (p<0.01) observed in 8,000 U lysozyme, followed by the 4,000 U, 2,000 U, and without lysozyme. The highest amounts of acetic acid, propionic acid (p<0.01) and total volatile fatty acid (TVFA) (p<0.05) were found in 8,000 U after 24 h of incubation. The $CH_4$ concentration was the lowest in the 8,000 U and the highest in the without lysozyme addition after 24 h of incubation. There was no significant differences in general bacteria, methanogen, or protozoan DNA copy number. So far, addition of lysozyme increased the acetate, propionate, TVFA, and decreased $CH_4$ concentration. These results suggest that lysozyme supplementation may improve in vitro rumen fermentation and reduce $CH_4$ emission.