Browse > Article
http://dx.doi.org/10.5713/ajas.15.0166

Effects of Candida norvegensis Live Cells on In vitro Oat Straw Rumen Fermentation  

Ruiz, Oscar (College of Animal Science and Ecology, Autonomous University of Chihuahua)
Castillo, Yamicela (Department of Veterinary Medicine, Multidisciplinary Division, Autonomous University of Juarez City)
Arzola, Claudio (College of Animal Science and Ecology, Autonomous University of Chihuahua)
Burrola, Eduviges (College of Animal Science and Ecology, Autonomous University of Chihuahua)
Salinas, Jaime (College of Veterinary Medicine and Animal Science, Autonomous University of Tamaulipas)
Corral, Agustin (College of Animal Science and Ecology, Autonomous University of Chihuahua)
Hume, Michael E. (Agricultural Research Service, Southern Plains Research Center, Food and Feed Safety Research Unit, United States Department of Agriculture)
Murillo, Manuel (College of Veterinary Medicine and Animal Science, Juarez University of Durango State)
Itza, Mateo (Department of Veterinary Medicine, Multidisciplinary Division, Autonomous University of Juarez City)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.2, 2016 , pp. 211-218 More about this Journal
Abstract
This study evaluated the effect of Candida norvegensis (C. norvegensis) viable yeast culture on in vitro ruminal fermentation of oat straw. Ruminal fluid was mixed with buffer solution (1:2) and anaerobically incubated with or without yeast at $39^{\circ}C$ for 0, 4, 8, 16, and 24 h. A fully randomized design was used. There was a decrease in lactic acid (quadratic, p = 0.01), pH, (quadratic, p = 0.02), and yeasts counts (linear, p<0.01) across fermentation times. However, in vitro dry matter disappearance (IVDMD) and ammonia-N increased across fermentation times (quadratic; p<0.01 and p<0.02, respectively). Addition of yeast cells caused a decrease in pH values compared over all fermentation times (p<0.01), and lactic acid decreased at 12 h (p = 0.05). Meanwhile, yeast counts increased (p = 0.01) at 12 h. C. norvegensis increased ammonia-N at 4, 8, 12, and 24 h (p<0.01), and IVDMD of oat straw increased at 8, 12, and 24 h (p<0.01) of fermentation. Yeast cells increased acetate (p<0.01), propionate (p<0.03), and butyrate (p<0.03) at 8 h, while valeriate and isovaleriate increased at 8, 12, and 24 h (p<0.01). The yeast did not affect cellulolytic bacteria (p = 0.05), but cellulolytic fungi increased at 4 and 8 h (p<0.01), whereas production of methane decreased (p<0.01) at 8 h. It is concluded that addition of C. norvegensis to in vitro oat straw fermentation increased ruminal fermentation parameters as well as microbial growth with reduction of methane production. Additionally, yeast inoculum also improved IVDMD.
Keywords
Rumen; Fermentation; Yeast; Oat Straw; Methane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Tang, S. X., G. O. Tayo, Z. L. Tan, Z. H. Sun, L. X. Shen, C. S. Zhou, W. J. Xiao, G. P. Ren, X. F. Han, and S. B. Shen. 2008. Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim. Sci. 86:1164-1172.   DOI
2 Taylor, K. A. C. C. 1996. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 56:49-58.   DOI
3 Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 48:185-197.   DOI
4 Williams, P. E., A. Tait, G. M. Innes, and C. J. Newbold. 1991. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim. Sci. 69:3016-3026.   DOI
5 Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA-polymorphism amplified by arbitrary primers is useful as genetic markers. Nucl. Acids Res. 18:6531-6535.   DOI
6 Williams, P. E. V. and C. J. Newbold. 1990. Rumen probiosis: the effects of novel microorganisms on rumen fermentation and rumen productivity. In: (Eds. W. Haresing, and D J. A. Cole), Recent Advances in Animal Nutrition. Butterworths, London, England. p. 211.
7 Ye, G., Y. Zhu, J. Liu, X. Chen, and K. Huang. 2014. Preparation of glycerol-enriched yeast culture and its effect on blood metabolites and ruminal fermentation in goats. PLOS ONE 9(4):e94410.   DOI
8 Ando, S., Y. Nishiguchi, K. Hayasaka, H. Iefuji, and J. Takahashi. 2006. Effects of Candida utilis treatment on the nutrient value of rice bran and the effect of Candida utilis on the degradation of forages in vitro. Asian Australas. J. Anim. Sci. 19:806-810.   DOI
9 Ando, S., R. I. Khan, J. Takahasi, Y. Gamo, R. Morikawa, Y. Nishiguchi, and K. Hayasaka. 2004. Manipulation of rumen fermentation by yeast: The effects of dried beer yeast on the in vitro degradability of forages and methane production. Asian Australas. J. Anim. Sci. 17:68-72.   DOI
10 Arambel, M. J. and T. Rung-Syin. 1987. Evaluation of Saccharomyces cerevisiae growth in the rumen ecosystem. Memories 19th Biennial Conference on Rumen Function, Chicago, IL, USA. pp. 17-19.
11 Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy. Sci. 63:64-75.   DOI
12 Caldwell, D. R. and M. P. Bryant. 1966. Medium without fluid for non-selective enumeration and isolation of rumen bacteria. Appl. Microbiol. 14:794-801.
13 Capetillo, L. C. M., P. E. Herrera, and C. C. C. Sandoval. 2002. Chemical composition of boherhavia erecta L, digestibility and gas production in vitro. Arch. Zootec. 51:461-464.
14 Castillo, Y. 2009. In vitro Fermentation to Obtain the Yeast Candida norvegensis in Mixes of Alfalfa with Fermented Apple Waste and Effects on the Microbial Activity. PhD Thesis. Facultad de Zootecnia y Ecologia. Universidad Autonoma de Chihuahua. Chihuahua, Mexico.
15 Chaucheyras-Durand, F., G. Fonty, G. Bertin, and P. Gouet. 1995. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Curr. Microbiol. 31:201-205.   DOI
16 Chaucheyras-Durand, F. and G. Fonty. 2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev. 41:57-68.   DOI
17 Chaucheyras-Durand, F., E. Chevaux, C. Martin, E. Forano. 2012. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. Chapter 7. In: Probiotic in Animals. Edited by Everlon Cid Rigobelo. INTECH, http://dx.doi.org/10.5772/50192. pp.119-152.
18 Dolezal, P., J. Dvoracek, J. Dolezal, J. Cermakova, L. Zeman, and K. Szwedziak. 2011. Effect of feeding yeast culture on ruminal fermentation and blood indicators of Holstein dairy cows. Acta Vet. Brno. 80:139-145.   DOI
19 Dengis, P. D., L. R. Nelissen, and P. G. Rouxhet. 1995. Mechanisms of yeast flocculation comparison of top- and bottom-fermenting strains. Appl. Environ. Microbiol. 61:718- 728.
20 Diaz, A., C. Saro, M. L. Tejido, A. Sosa, M. E. Martinez, J. Galindo, M. D. Carro, and M. J. Ranilla. 2011. Effects of a yeast enzymatic hydrolyzate on in vitro ruminal fermentation. In: Challenging strategies to promote the sheep and goat sector in the current global context (Eds. M. J. Ranilla, M. D. Carro, H. Ben Salem, and P. Morand-Fehr). Zaragoza: CIHEAM, CSIC, Universidad de Leon, FAO. pp. 181-186. http://om.ciheam.org/article.php?IDPDF=801554 Accessed June 2, 2014.
21 Elias, A. 1971. The Rumen Bacteria of Animals Fed on a High Molasses-urea Diet. Ph. D Thesis. University of Aberdeen, Aberdeen, UK.
22 Elias, A. 1983. Digestion of grasslands and tropical forages. In: The grasslands in Cuba, vol. 2. Ed. EDICA. La Habana, Cuba. pp.187-246.
23 Erasmus, L. J., P. M. Botha, and A. Kistner. 1992. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 75:3056- 3065.   DOI
24 Erasmus, L. J., P. H. Robinson, A. Ahmadi, R. Hinders, and J. E. Garrett. 2005. Influence of prepartum and postpartum supplementation of a yeast culture and monensin, or both, on ruminal fermentation and performance of multiparous dairy cows. Anim. Feed. Sci. Technol. 122:219-239.   DOI
25 Hungate, R. E. 1969. A roll tube method for cultivation in microbiology (Eds. J. B. Morris and D. B. Ribbons). Academic Press Inc., New York, NY, USA. 117 p.
26 Krizova, L., M. Richter, J. Trinacty, J. Riha, and D. Kumprechtova. 2011. The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wireless device. Czech J. Anim. Sci. 56:37- 45.   DOI
27 Inal, F., E. Grrbrz, B. Coskun, M. S. Malatas, O. B. Citil, E. S. Polat, E. Seker, and C. Ozcan. 2010. The Effects of live yeast culture (Saccharomyces cerevisiae) on rumen fermentation and nutrient degradability in yearling lambs. Kafkas Univ. Vet. Fak. 16:799-804.
28 Joblin, K. N. 1981. Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 42:1119-1122.
29 Kowalik, B., J. Skomial, J. J. Pajak, M. Taciak, M. Majewska, and G. Belzecki. 2012. Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (Saccharomyces cerevisiae) preparation. Anim. Sci. Pap. Rep. 30: 329-338.
30 Kung, L. Jr., E. M. Kreck, R. S. Tung, A. O. Hession, A. C. Sheperd, M. A. Cohen, H. E. Swain, and J. A. Leedle. 1997. Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. J. Dairy Sci. 80:2045-2051.   DOI
31 Lattimer, J. M., S. R. Cooper, D.W. Freeman, and D. L. Lalman. 2007. Effect of yeast culture on in vitro fermentation of a highconcentrate or high-fiber diet using equine fecal inoculums in a Daisy II incubator. J. Anim. Sci. 85:2484-2491.   DOI
32 Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda, and H. Itabashi. 2004. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854.   DOI
33 Marrero, Y., O. Ruiz, A. Corrales, O. Jay, J. Galindo, Y. Castillo, and N. Madera. 2014. In vitro gas production of fibrous substrates with the inclusion of yeast. Cuban J. Agric. Sci. 48: 119-123.
34 Longuski, R. A., Y. Ying, and M. S. Allen. 2009. Yeast culture supplementation prevented milk fat depression by a short-term dietary challenge with fermentable starch. J. Dairy Sci. 92: 160-167.   DOI
35 Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608.   DOI
36 Marrero Y., M. E. Burrola-Barraza, Y. Castillo, L. C. Basso, C. A. Rosa, O. Ruiz, and E. Gonzalez-Rodriguez. 2013. Identification of Levica yeasts as a potential ruminal microbial additive. Czech J. Anim. Sci. 58:460-469.   DOI
37 Marrero, Y., Y. Castillo, O. Ruiz, E. Burrola, and C. Angulo. 2015. Feeding of yeast (Candida spp.) improves in vitro ruminal fermentation of fibrous substrates. J. Integr. Agric. 14:514-519.   DOI
38 Mendoza, M. G. D. and R. Ricalde-Velasco. 1993. Alimentacion de ganado bovino con dietas altas en grano. Universidad Autonoma Metropolitana. Cap. 9. Uso de aditivos alimenticios. p. 97.
39 Miller-Webster, T., W. H. Hoover, M. Holt, and J. E. Nocek. 2002. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J. Dairy Sci. 85:2009-2014.   DOI
40 Moallem, U., H. Lehrer, L. Livshitz, M. Zachut, and S. Yakoby. 2009. The effects of live yeast supplementation to dairy cows during the hot season on production feed efficiency, and digestibility. J. Dairy Sci. 92:343-351.   DOI
41 Newbold, C. J., R. J. Wallace, and F. M. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261.   DOI
42 Moukadiri, I., J. Armero, A. Abad, R. Sentandreu, and J. Zueco. 1997. Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J. Bacteriol. 179:2154-2162.   DOI
43 Mutsvangwa, T., I. E. Edwards, J. H. Topps, and G. F. M. Paterson. 1992. The effect of dietary inclusion of yeast culture (Yea- Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim. Prod. 55:35-40.   DOI
44 Newbold, C. J., R. J. Wallace, X. B. Chen, and F. M. McIntosh. 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci. 73:1811-1818.   DOI
45 Oeztuerk, H., B. Schroeder, M. Beyerbach, and G. Breves. 2005. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J. Dairy. Sci. 88:2594-2600.   DOI
46 Plata, P. F., M. G. D. Mendoza, J. R. Barcena-Gama, and M. S. Gonzalez. 1994. Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Anim. Feed. Sci. Technol. 49:203-210.   DOI
47 SAS. Institute. 2002. SAS. User's Guide. SAS Institute Inc. Cary, NC, USA.
48 Shin, H. T., Y. Beom Lim, J. Ho Koh, J. Yun Kim, S. Young Baig, and J. Heung Lee. 2002. Growth of Issatchenkia orientalis in aerobic batch and fed-batch cultures. J. Microbiol. 40:82-85.