DOI QR코드

DOI QR Code

Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage

  • Pineiro-Vazquez, Angel T. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatan) ;
  • Canul-Solis, Jorge R. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatan) ;
  • Jimenez-Ferrer, Guillermo O. (El Colegio de la Frontera Sur (ECOSUR)) ;
  • Alayon-Gamboa, Jose A. (El Colegio de la Frontera Sur, Unidad Campeche) ;
  • Chay-Canul, Alfonso J. (Division Academica de Ciencias Agropecuarias, Universidad Juarez Autonoma de Tabasco) ;
  • Ayala-Burgos, Armin J. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatan) ;
  • Aguilar-Perez, Carlos F. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatan) ;
  • Ku-Vera, Juan C. (Facultad de Medicina Veterinaria y Zootecnia, Universidad Autonoma de Yucatan)
  • Received : 2017.03.15
  • Accepted : 2017.10.22
  • Published : 2018.11.01

Abstract

Objective: The aim of the experiment was to assess the effect of increasing amounts of Leucaena leucocephala forage on dry matter intake (DMI), organic matter intake (OMI), enteric methane production, rumen fermentation pattern and protozoa population in cattle fed Pennisetum purpureum and housed in respiration chambers. Methods: Five crossbred heifers (Bos taurus${\times}$Bos indicus) (BW: $295{\pm}6kg$) were fed chopped P. purpureum grass and increasing levels of L. leucocephala (0%, 20%, 40%, 60%, and 80% of dry matter [DM]) in a $5{\times}5$ Latin square design. Results: The voluntary intake and methane production were measured for 23 h per day in respiration chambers; molar proportions of volatile fatty acids (VFAs) were determined at 6 h postprandial period. Molar concentration of VFAs in rumen liquor were similar (p>0.05) between treatments. However, methane production decreased linearly (p<0.005), recording a maximum reduction of up to ~61% with 80% of DM incorporation of L. leucocephala in the ration and no changes (p>0.05) in rumen protozoa population were found. Conclusion: Inclusion of 80% of L. leucocephala in the diet of heifers fed low-quality tropical forages has the capacity to reduce up to 61.3% enteric methane emission without affecting DMI, OMI, and protozoa population in rumen liquor.

Keywords

References

  1. Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. INR EDP Sciences Ann Zootech 2000;49:231-53.
  2. Gerber PJ, Steinfeld H, Herderson B, et al. Tackling climate change through livestock- a global assessment of emission and mitigation opportunities. Rome, Italy: Food and Agriculture Organization (FAO); 2013. 206 p.
  3. Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995;73:2483-92. https://doi.org/10.2527/1995.7382483x
  4. Kennedy PM, Charmley E. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim Prod Sci 2012;52:225-39. https://doi.org/10.1071/AN11103
  5. Chaokaur A, Nishida T, Phaowphaisal I, Sommart K. Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. Agric Ecosyst Environ 2014;199:225-30.
  6. Archimede H, Eugene M, Marie-Magdeleine C, et al. Comparison of methane production between C3 and C4 grasses and Legumes. Anim Feed Sci Technol 2011;166-167:59-64. https://doi.org/10.1016/j.anifeedsci.2011.04.003
  7. Min BR, Solaiman S, Shange R, Eun JS. Gastrointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol 2014;2014:141909.
  8. Soltan YA, Morsy AS, Sallam SMA, et al. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch Anim Nutr 2013;67:169-84. https://doi.org/10.1080/1745039X.2013.801139
  9. Gunun P, Wanapat M, Gunun N, et al. Effects of condensed tannins in mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation chracteristics and nitrogen utilization in goats. Asian-Australas J Anim Sci 2016;29:1111-9.
  10. Rira M, Morgavi DP, Archimede H, et al. Potential of tanninrich plants for modulating ruminal microbes and ruminal fermentation in sheep. J Anim Sci 2015;93:334-47. https://doi.org/10.2527/jas.2014-7961
  11. Wahyuni S, Yulianti ES, Komara W, et al. The performance of Ongole cattle offered either grass, sundried Leucaena leucocephala or varying proportions of each. Trop Anim Prod 1982;7:275-83.
  12. Bruinenberg MH, van der Honing Y, Agnew RE, et al. Energy metabolism of dairy cows fed on grass. Livest Prod Sci 2002;75:117-28. https://doi.org/10.1016/S0301-6226(01)00306-2
  13. Harrison MT, McSweeney C, Tomkins N, Eckard RJ. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 2015;136:138-46. https://doi.org/10.1016/j.agsy.2015.03.003
  14. Garcia E. Modifications to the climate classification system of Copen to adapt it to the conditions of the Mexican Republic. Mexico, Mexico: Institute of Geography, National Autonomous University of Mexico; 1981.
  15. Cochran WG, Cox GM. Experimental designs. 2nd edition. New York, USA: John Wiley and Sons Inc.; 1968. 661 p.
  16. Ramos-Morales E, Arco-Perez A, Martin-Garcia AI, et al. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim Feed Sci Technol 2014;198:57-66. https://doi.org/10.1016/j.anifeedsci.2014.09.016
  17. Hales KE, Brown-Brandl TM, Freetly HC. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle. J Anim Sci 2014;92:264-71. https://doi.org/10.2527/jas.2013-6994
  18. Bhatta R, Enishi O, Yabumoto Y, et al. Methane reduction and energy partitioning in goats fed two concentrations of tannin from Mimosa Spp. J Agric Sci (Camb) 2013;151:119-28. https://doi.org/10.1017/S0021859612000299
  19. Ryan JP. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine and blood plasma by gas-liquid chromatography. Anal Biochem 1980;108:374-84. https://doi.org/10.1016/0003-2697(80)90602-8
  20. Pinares-Patino CS, Waghorn G. Technical manual on respiration chamber designs. Wellington, New Zealand: Ministry of Agriculture and Forestry; 2012.
  21. Gardiner TD, Coleman MD, Innocenti F, et al. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock. Measurement 2015;66:272-9. https://doi.org/10.1016/j.measurement.2015.02.029
  22. Rosales M. Use of fodder trees for the control of ruminal protozoa. Livest Res Rural Dev 1989;1:79-85.
  23. FAO. Determination of cell concentrations using haemocytometer according to Fuchs Rosenthal and Burker [Internet]. Gent, Belgium: FAO, 2003 [April 16, 2016]. Available from: http://www.fao.org/DOCREP/003/W3732E/w3732e0b.htm
  24. Ogimoto K, Imai S. Atlas of rumen microbiology. Tokyo, Japan: Japan Scientific Societies Press; 1981. 223 p.
  25. AOAC. Official methods of analysis. Association of Official Analytical Chemists. 15th Edition. Washington DC, USA: AOAC International; 1980. 70 p.
  26. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  27. Makkar HPS. Quantification of tannins in tree and shrub foliage: a laboratory analysis. Dordrecht, The Netherlands: Kluwer Amademic Publisher; 2003.
  28. SAS. Institute Inc., SAS/STAT. Software, Ver. 9.00. Cary, NC, USA: SAS Inc.; 2006.
  29. Kumar R, Singh M. Tannins: their adverse role in ruminant nutrition. J Agric Food Chem 1984;32:447-53. https://doi.org/10.1021/jf00123a006
  30. Delgado DC, Galindo J, Ibett JCO, Dominguez M, Dorta N. Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and production of methane in sheep. Rev Cub Cienc Agric 2013;47:267-71.
  31. Min BR, Pinchak WE, Anderson RC, Fulford JD, Puchala R. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat. J Anim Sci 2006;84:2546-54. https://doi.org/10.2527/jas.2005-590
  32. Beauchemin KA, McGinn SM, Martinez TF, McAllister TA. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J Anim Sci 2007;85:1990-6. https://doi.org/10.2527/jas.2006-686
  33. Grainger C, Clarke T, Auldist MJ, et al. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian J Anim Sci 2009;89:241-51. https://doi.org/10.4141/CJAS08110
  34. Dias-Moreira G, Tavares-Lima P de M, Oliveira-Borge B, et al. Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission. Trop Anim Health Prod 2013;45:879-82. https://doi.org/10.1007/s11250-012-0284-0
  35. Puchala R, Animut G, Patra AK, et al. Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Anim Feed Sci Technol 2012;175:76-84. https://doi.org/10.1016/j.anifeedsci.2012.03.015
  36. Tan HY, Sieo CC, Abdullah N, et al. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol 2011;169:185-93. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  37. Molina-Botero IC, Cantet JM, Montoya S, Correa-Londono GA, Barahona-Rosales R. In vitro methane production from two tropical grasses alone or in combination with Leucaena leucocephala or Gliricidia sepium. Ces Med Vet Zootec 2013;8:31.
  38. Animut G, Puchala R, Goetsch AL, et al. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim Feed Sci Technol 2008;144:212-27. https://doi.org/10.1016/j.anifeedsci.2007.10.014
  39. Pinares-Patino CS, Ulyatt MJ, Lassey KR, Barry TN, Holmes CW. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay. J Agric Sci 2003;140:205-14. https://doi.org/10.1017/S0021859603003046
  40. Assoumaya C, Sauvant D, Archimede H. Comparative study of ingestion and digestion of tropical and temperate forage. INRA Prod Anim 2007;20:383-92.
  41. Jayanegara A, Leiber F, Kreuzer M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 2012;96:365-75. https://doi.org/10.1111/j.1439-0396.2011.01172.x
  42. Traiyakun S, Harakord W, Yuangklang C, Paengkoum P. Leucaena leucocephala meal as replacement to soybean meal in growing goat diets. J Agric Sci Technol 2011;1:1150-4.
  43. Osakwe II, Steingass H. Ruminal fermentation and nutrient digestion in West African Dwarf (WAD) sheep fed Leucaena leucocephala supplemental diets. Agroforest Syst 2006;67:129-33. https://doi.org/10.1007/s10457-005-7474-y
  44. Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 2012;21:759-72. https://doi.org/10.22358/jafs/66148/2012
  45. Tiemann TT, Lascano CE, Wettstein HR, et al. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2008;2:790-9.
  46. Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157-61. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  47. Galindo J, Gonzalez N, Delgado D, et al. Modulating effect of Leucaena leucocephala on the ruminal microbiota. Zootec Trop 2008;26:249-52.
  48. Yanez-Ruiz DR, Hart KJ, Martin-Garcia IA, Ramos S, Newbold CJ. Diet composition at weaning affects the rumen microbial population and methane emissions by lambs. Aust J Exp Agric 2008;48:186-8. https://doi.org/10.1071/EA07237
  49. Coleman GS. The distribution of carboxymethylcellulase between fractions taken from the rumen of sheep containing no protozoa or one of five different protozoal populations. J Agric Sci 1986;106:121-7. https://doi.org/10.1017/S0021859600061827
  50. Demeyer DL. Rumen microbes and digestion of plant cell walls. Agric Environ 1981;6:295-337. https://doi.org/10.1016/0304-1131(81)90020-5
  51. Sliwinski BJ, Carla RS, Machmuller A, Kreuze M. Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim Feed Sci Technol 2002;101:101-14. https://doi.org/10.1016/S0377-8401(02)00139-6

Cited by

  1. Ambition Meets Reality: Achieving GHG Emission Reduction Targets in the Livestock Sector of Latin America vol.4, pp.None, 2020, https://doi.org/10.3389/fsufs.2020.00065
  2. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis vol.62, pp.1, 2018, https://doi.org/10.5187/jast.2020.62.1.31
  3. Productive behavior in growing kid goats and methane production with the inclusion of chokecherry leaf (Prunus salicifolia) vol.52, pp.3, 2018, https://doi.org/10.1007/s11250-019-02124-5
  4. Research progress on the application of feed additives in ruminal methane emission reduction: a review vol.9, pp.None, 2018, https://doi.org/10.7717/peerj.11151
  5. Examining the Variables Leading to Apparent Incongruity between Antimethanogenic Potential of Tannins and Their Observed Effects in Ruminants-A Review vol.13, pp.5, 2018, https://doi.org/10.3390/su13052743
  6. Effects of Dietary Tannins’ Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis vol.13, pp.13, 2021, https://doi.org/10.3390/su13137410
  7. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis vol.312, pp.None, 2018, https://doi.org/10.1016/j.jclepro.2021.127693
  8. Effect of tannins from tropical plants on methane production from ruminants: A systematic review vol.14, pp.None, 2018, https://doi.org/10.1016/j.vas.2021.100214