DOI QR코드

DOI QR Code

Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract

발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro

  • Marbun, Tabita Dameria (Department of Animal Science, Kyungpook National University) ;
  • Song, Jaeyong (Department of Animal Science, Kyungpook National University) ;
  • Lee, Kihwan (Department of Animal Science, Kyungpook National University) ;
  • Kim, Su Yeon (Department of Animal Science, Kyungpook National University) ;
  • Kang, Juhui (Department of Animal Science, Kyungpook National University) ;
  • Lee, Sang Moo (Department of Animal Science, Kyungpook National University) ;
  • Choi, Young Min (Department of Animal Science, Kyungpook National University) ;
  • Cho, Sangbuem (CALSNBT Co. Ltd.) ;
  • Bae, Guiseck (Department of Animal Science and Technology, Chung-Ang University) ;
  • Chang, Moon Baek (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Eun Joong (Department of Animal Science, Kyungpook National University)
  • Received : 2016.07.08
  • Accepted : 2016.09.26
  • Published : 2016.11.30

Abstract

This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

Keywords

References

  1. Bruno, M. E. C. and T. J. Montville. 1993. Common mechanistic action of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 59: 3003-3010.
  2. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132.
  3. Cowan, M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
  4. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  5. Gao, Z., K. Huang, and H. Xu. 2001. Protective effects of flavonoids in the roots of scutellaria baicalensis georgi against hydrogen peroxide-induced oxidative stress in HSSY5Y cells. Pharmacol. Res. 43: 173-178. https://doi.org/10.1006/phrs.2000.0761
  6. Gao, Z., K. Huang, X. Yang, and H. Xu. 1999. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta. 1472: 643-650. https://doi.org/10.1016/S0304-4165(99)00152-X
  7. Guo, A. J. Y., R. C. Y. Choi, A. W. H. Cheung, V. P. Chen, S. L. Xu, T. T. X. Dong, J. J. Chen, and K. W. K. Tsim. 2011. Baicalin, a flavone, induces the differentiation of cultured osteoblasts: an action via the Wnt/${\beta}$-catenin signaling pathway. J. Biol. Chem. 286: 27882-27893. https://doi.org/10.1074/jbc.M111.236281
  8. Hungate, R. E., J. Reichl, and R. Prins. 1971. Parameters of fermentation in a continuously fed sheep: evidence of a microbial rumination pool. Appl. Microbiol. 22: 1104-1113.
  9. Hungate, R. E., W. Smith, T. Bauchop, I. Yu, and J. C. Rabinowitz. 1970. Formate as an Intermediate in the Bovine Rumen Fermentation. J. Bacteriol. 102: 389-397.
  10. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492. https://doi.org/10.2527/1995.7382483x
  11. Landers, T. F., B. Cohen, T. E. Wittum, and E. L. Larson. 2012. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127: 4-22. https://doi.org/10.1177/003335491212700103
  12. Martin, C., D. P. Morgavi, and M. Doreau. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4: 351-365. https://doi.org/10.1017/S1751731109990620
  13. Masoko, P. and J. N. Eloff. 2007. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. Afr. J. Tradit. Complement. Altern. Med. 4: 231-239.
  14. Mathew, A. G., R. Cissell, and S. Liamthong. 2007. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne. Pathog. Dis. 4: 115-33. https://doi.org/10.1089/fpd.2006.0066
  15. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43: 99-109. https://doi.org/10.1042/bj0430099
  16. Morgavi, D. P., E. Forano, C. Martin, and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4: 1024-1036. https://doi.org/10.1017/S1751731110000546
  17. Moss, A. R., J.-P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231-253. https://doi.org/10.1051/animres:2000119
  18. Mukherjee, S. and A. Ramesh. 2015. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J. Med. Microbiol. 64: 1514-1526. https://doi.org/10.1099/jmm.0.000181
  19. Nightingale, K. K., Y. H. Schukken, C. R. Nightingale, E. D. Fortes, A. J. Ho, Z. Her, Y. T. Grohn, P. L. McDonough, and M. Wiedmann. 2004. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl. Environ. Microbiol. 70: 4458-4467. https://doi.org/10.1128/AEM.70.8.4458-4467.2004
  20. Wilson, A. R., D. Sigee, and H. A. S. Epton. 2005. Anti-bacterial activity of Lactobacillus plantarum strain SK1 against Listeria monocytogenes is due to lactic acid production. J. Appl. Microbiol. 99: 1516-1522. https://doi.org/10.1111/j.1365-2672.2005.02725.x