• Title/Summary/Keyword: Methane abatement

Search Result 13, Processing Time 0.026 seconds

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Effect of Water Vapor on Ozone-Induced Lean Methane Oxidation Using Cobalt-Exchanged BEA Catalysts

  • So Min Jin;Dae-Won Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.4
    • /
    • pp.364-370
    • /
    • 2024
  • In response to the threats of global warming and climate change, the development of highly energy-efficient lean methane oxidation processes has become crucial. One promising technology is ozone-induced lean methane oxidation (O3-LMO), which utilizes ozone as an oxidant and a transition metal-loaded zeolite as a catalyst. Our previous study demonstrated that the O3-LMO system, employing a cobalt-exchanged BEA (Co-BEA) catalyst, effectively abates lean methane (500 ppm) at low temperatures below 200℃ under dry conditions. In this study, we investigated the effect of water vapors on the performance of Co-BEA-based O3-LMO system. The results indicated that CH4 conversion, CO2 selectivity, and O3 utilization efficiency of the system were not significantly affected by water vapors. Additionally, any temporary suppression of activity could be easily reversed through simple vacuum drying of the catalyst. The system maintained robust activity for over 18 hours during prolonged testing under wet conditions.

Effects of Probiotic-vitacogen and β1-4 Galacto-oligosaccharides Supplementation on Methanogenesis and Energy and Nitrogen Utilization in Dairy Cows

  • Mwenya, B.;Zhou, X.;Santoso, B.;Sar, C.;Gamo, Y.;Kobayashi, T.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.349-354
    • /
    • 2004
  • The effects of probiotic-vitacogen and galacto-oligosaccharides (GOS) supplementation on methanogesis, energy and nitrogen utilization in replacement dairy cows were evaluated. A basal diet comprising orchardgrass hay, lucerne hay cube and concentrate (2:2:1, DM basis) were fed with or without supplements to four cows at $80g\;DM/kgBW^{0.75}$per day in a $4{\times}4$ Latin square arrangement. The four treatments were; 1) basal diet, 2) basal diet plus 100 g probiotic-vitacogen, 3) basal diet plus 50 g GOS, 4) basal diet plus 50 g GOS and 100 g probiotic-vitacogen. Nutrient apparent digestibility was not altered by the effect of supplementation. Nitrogen intake was significantly (p<0.001) higher for the two vitacogen-supplemented diets compared to control and GOS supplemented diets. However, vitacogen supplemented diets had numerically higher fecal and urinary nitrogen losses, thereby, having lower nitrogen retention compared to control and GOS supplemented diets. Gross energy intake was also significantly (p<0.05) higher for vitacogen-supplemented diets compared to control and GOS diets, however, due to higher losses in feces, urine, methane and heat, GOS supplemented diet had numerically higher energy retention. There was an 11% reduction in methane emission (liters/day) in GOS supplemented diet compared to control diet. However, the combination of GOS with vitacogen resulted in an increased methane emission. When expressed per unit of animal production (g/kg live-weight gain), methane production tended to be lower in vitacogensupplemented diets compared to control and GOS diets. The supplementation of replacement dairy cows with GOS reduced methane emission (liters/day), while, vitacogen supplementation reduced methane emission per unit animal production. The two feed supplements may contribute to the abatement of methane as a greenhouse gas.

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

  • Olivares-Palma, S.M.;Meale, S.J.;Pereira, L.G.R.;Machado, F.S.;Carneiro, H.;Lopes, F.C.F.;Mauricio, R.M.;Chaves, Alex V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1102-1110
    • /
    • 2013
  • Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for $CH_4$ abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and $CH_4$ production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest $CH_4$ (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce $CH_4$ production, without adversely affecting nutrient degradability.