DOI QR코드

DOI QR Code

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Published : 2010.03.01

Abstract

Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

Keywords

References

  1. Callaway, T. R., A. M. S. Cameiro De Melo and J. B. Russell. 1997. The effect of nicin and monensin on ruminal fermentations in vitro. Curr. Microbiol. 35:90-96 https://doi.org/10.1007/s002849900218
  2. Calsamiglia, S., M. Busquet, P. W. Cardozo, L. Castillejos and A. Ferret. 2007. Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 90:2580-2595 https://doi.org/10.3168/jds.2006-644
  3. Chalupa, W. 1977. Manipulating rumen fermentation. J. Anim. Sci. 46:585-599
  4. Denman, S. E., N. W. Tomkins and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322 https://doi.org/10.1111/j.1574-6941.2007.00394.x
  5. Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in mediumchain fatty acids to suppress ruminal methanogenesis as measured with Rusitec. Can. J. Anim. Sci. 80:473-482 https://doi.org/10.4141/A99-113
  6. Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as infuenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51 https://doi.org/10.1046/j.1472-765x.2001.00863.x
  7. Guan, H., K. M. Wittenberg, K. H. Ominski and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906 https://doi.org/10.2527/jas.2005-652
  8. Guo, Y. Q., J. -X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47:421-426 https://doi.org/10.1111/j.1472-765X.2008.02459.x
  9. Hook, S. E., K. S. Northwood, A.-D. G. Wright and B. W. McBride. 2009. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75:374-380 https://doi.org/10.1128/AEM.01672-08
  10. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate change 2001: a scientific basis, intergovernmental panel on climate change (Ed. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, C. A. Johnson and K. Maskell). Cambridge University Press
  11. Johnson, K. A. and D. E. Johson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492
  12. Kobayashi, Y., M. Wakita and S. Hoshino. 1988. Persistency of salinomycin effect on ruminal fermentation in wethers. Nutr. Rep. Int. 38:987-999
  13. Kubo, I., H. Muroi and M. Himejima.1993. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 41:1016-1019 https://doi.org/10.1021/jf00030a036
  14. Lee, S. S., J. T. Hsu, H. C. Mantovani and J. B. Russell. 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55
  15. Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim. Sci. 21:144-154
  16. Morrison, M. 2008. The ecophysiology of plant biomass conversion in vertebrate herbivores: new insights from metagenomics. Proc. Mie Bioforum 2008 (Ed. K. Sakka). CDROM
  17. Odongo, N. E., R. Bagg, G. Vessie, P. Dick, M. M. Or-Rashid, S. E. Hook, J. T. Gray, E. Kebreab, J. France and B. W. McBride. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90:1781-1788 https://doi.org/10.3168/jds.2006-708
  18. Rumpler, W. V., D. E. Johnson and D. B. Bates. 1986. The effect of high dietary cation concentrations of methanogenesis by steers fed with or without ionophores. J. Anim. Sci. 62:1737-1741
  19. Russell, J. B. and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1-6
  20. Schelling, G. T. 1984. Monensin mode of action in the rumen. J. Anim. Sci. 58:1518-1527
  21. Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084
  22. Teather, R. M. and R. J. Forster. 1998. Manupulating the rumen microflora with bacteriocins to improve ruminant production. Can. J. Anim. Sci. 78:57-69 https://doi.org/10.4141/A97-070
  23. Tokura, M., I. Changan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128 https://doi.org/10.1007/s002849900432
  24. Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526 https://doi.org/10.1111/j.1365-2672.2004.02330.x
  25. Van Nevel, C. J., D. I. Demeyer and H. K. Henderickx. 1971. Effect of fatty acid derivatives on rumen methane and propionate in vitro. Appl. Environ. Microbiol. 21:365-366
  26. Vogels, G. D., W. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612
  27. Williams, Y. J., S. Popovski, S. M. Rea, L. C. Skillman, A. F. Toovey, K. S. Northwood and A-D. G. Wright. 2009. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 75:1860-1866 https://doi.org/10.1128/AEM.02453-08
  28. Wina, E., S. Muetzel and K. Becker. 2005. The impact of saponins or saponin-containing plant materials on ruminant production - a review. J. Agric. Food Chem. 53:8093-8105 https://doi.org/10.1021/jf048053d
  29. Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Prpfess. London. pp. 467-491
  30. Wright, A. D. G., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976-3985 https://doi.org/10.1016/j.vaccine.2004.03.053
  31. Yabuuchi, Y., Y. Matsushita, K. Otsuka, K. Fukamachi and Y. Kobayashi. 2006. Effects of supplemental lauric acid-rich oils in high-grain diet on in vitro rumen fermentation. Anim. Sci. J. 77:300-307 https://doi.org/10.1111/j.1740-0929.2006.00352.x
  32. Yabuuchi, Y., M. Tani, Y. Matsushita, H. Otsuka and Y. Kobayashi. 2007. Effects of lauric acid on physical, chemical and microbial characteristics in the rumen of steers on a high grain diet. Anim. Sci. J. 78:387-394 https://doi.org/10.1111/j.1740-0929.2007.00451.x

Cited by

  1. Effect of dietary monensin inclusion on performance, nutrient utilisation, rumen volatile fatty acid concentration and blood status of West African dwarf bucks fed with basal diets of forages vol.44, pp.5, 2012, https://doi.org/10.1007/s11250-011-0043-7
  2. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation vol.85, pp.3, 2014, https://doi.org/10.1111/asj.12133
  3. Synergistic effect of methane emission through ruminant production vol.10, pp.25, 2015, https://doi.org/10.5897/AJAR2014.8686
  4. 外源添加产乙酸菌和酿酒酵母发酵物对瘤ƒƒ发酵特性及产乙酸菌菌群结构的影响 vol.16, pp.8, 2015, https://doi.org/10.1631/jzus.B1500013
  5. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle pp.13443941, 2015, https://doi.org/10.1111/asj.12368
  6. ruminal fermentation and microbial population vol.101, pp.4, 2016, https://doi.org/10.1111/jpn.12508
  7. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0126-4
  8. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions vol.97, pp.11, 2014, https://doi.org/10.3168/jds.2014-8064
  9. Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation pp.1867-1314, 2019, https://doi.org/10.1007/s12602-018-9502-z
  10. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen vol.71, pp.11, 2010, https://doi.org/10.1016/j.phytochem.2010.05.010
  11. Exploration of natural materials as a condidate feed additive to mitigate methane emission from enteric fermentation of domestic animals vol.36, pp.1, 2010, https://doi.org/10.1584/jpestics.w10-85
  12. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review vol.8, pp.3, 2010, https://doi.org/10.3390/vaccines8030460
  13. Growth-promoting effect of water-washed neem (Azadirachta indica A. Juss) fruit inclusion in West African dwarf rams vol.52, pp.6, 2010, https://doi.org/10.1007/s11250-020-02380-w
  14. Catfish oil supplementation in Bali cattle diet: Effects on rumen fermentation parameters, carboxymethylcellulase and protease activity in vitro vol.782, pp.2, 2021, https://doi.org/10.1088/1755-1315/782/2/022082
  15. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities vol.7, pp.4, 2010, https://doi.org/10.1016/j.aninu.2021.10.003
  16. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance vol.11, pp.1, 2010, https://doi.org/10.1038/s41598-021-03356-y