Browse > Article
http://dx.doi.org/10.5713/ajas.2010.r.01

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation  

Kobayashi, Yasuo (Research Faculty of Agriculture, Hokkaido University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.3, 2010 , pp. 410-416 More about this Journal
Abstract
Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.
Keywords
Rumen; Methane; Microbes; Fermentation; Hydrogen Sinks;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Van Nevel, C. J., D. I. Demeyer and H. K. Henderickx. 1971. Effect of fatty acid derivatives on rumen methane and propionate in vitro. Appl. Environ. Microbiol. 21:365-366
2 Chalupa, W. 1977. Manipulating rumen fermentation. J. Anim. Sci. 46:585-599
3 Hook, S. E., K. S. Northwood, A.-D. G. Wright and B. W. McBride. 2009. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75:374-380   DOI   ScienceOn
4 Johnson, K. A. and D. E. Johson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492   PUBMED   ScienceOn
5 Lee, S. S., J. T. Hsu, H. C. Mantovani and J. B. Russell. 2002. The effect of bovicin HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55   PUBMED   ScienceOn
6 Rumpler, W. V., D. E. Johnson and D. B. Bates. 1986. The effect of high dietary cation concentrations of methanogenesis by steers fed with or without ionophores. J. Anim. Sci. 62:1737-1741   PUBMED
7 Williams, Y. J., S. Popovski, S. M. Rea, L. C. Skillman, A. F. Toovey, K. S. Northwood and A-D. G. Wright. 2009. A vaccine against rumen methanogens can alter the composition of archaeal populations. Appl. Environ. Microbiol. 75:1860-1866   DOI   ScienceOn
8 Yabuuchi, Y., M. Tani, Y. Matsushita, H. Otsuka and Y. Kobayashi. 2007. Effects of lauric acid on physical, chemical and microbial characteristics in the rumen of steers on a high grain diet. Anim. Sci. J. 78:387-394   DOI   ScienceOn
9 Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim. Sci. 21:144-154   ScienceOn
10 Yabuuchi, Y., Y. Matsushita, K. Otsuka, K. Fukamachi and Y. Kobayashi. 2006. Effects of supplemental lauric acid-rich oils in high-grain diet on in vitro rumen fermentation. Anim. Sci. J. 77:300-307   DOI   ScienceOn
11 Callaway, T. R., A. M. S. Cameiro De Melo and J. B. Russell. 1997. The effect of nicin and monensin on ruminal fermentations in vitro. Curr. Microbiol. 35:90-96   DOI   ScienceOn
12 Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084   PUBMED   ScienceOn
13 Tokura, M., I. Changan, K. Ushida and Y. Kojima. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Curr. Microbiol. 39:123-128   DOI   ScienceOn
14 Odongo, N. E., R. Bagg, G. Vessie, P. Dick, M. M. Or-Rashid, S. E. Hook, J. T. Gray, E. Kebreab, J. France and B. W. McBride. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 90:1781-1788   DOI   ScienceOn
15 Schelling, G. T. 1984. Monensin mode of action in the rumen. J. Anim. Sci. 58:1518-1527   PUBMED
16 Morrison, M. 2008. The ecophysiology of plant biomass conversion in vertebrate herbivores: new insights from metagenomics. Proc. Mie Bioforum 2008 (Ed. K. Sakka). CDROM
17 Denman, S. E., N. W. Tomkins and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62:313-322   DOI   PUBMED
18 Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2000. Comparative efficiency of various fats rich in mediumchain fatty acids to suppress ruminal methanogenesis as measured with Rusitec. Can. J. Anim. Sci. 80:473-482   DOI   ScienceOn
19 Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as infuenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51   DOI   ScienceOn
20 Kobayashi, Y., M. Wakita and S. Hoshino. 1988. Persistency of salinomycin effect on ruminal fermentation in wethers. Nutr. Rep. Int. 38:987-999
21 Guo, Y. Q., J. -X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47:421-426   DOI   ScienceOn
22 Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97:520-526   DOI   ScienceOn
23 Wright, A. D. G., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976-3985   DOI   ScienceOn
24 Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions. In: The Rumen Microbial Ecosystem. 2nd ed. (Ed. P. J. Hobson and C. S. Stewart), Blackie Acad. Prpfess. London. pp. 467-491
25 Kubo, I., H. Muroi and M. Himejima.1993. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 41:1016-1019   DOI   ScienceOn
26 Teather, R. M. and R. J. Forster. 1998. Manupulating the rumen microflora with bacteriocins to improve ruminant production. Can. J. Anim. Sci. 78:57-69   DOI   ScienceOn
27 Wina, E., S. Muetzel and K. Becker. 2005. The impact of saponins or saponin-containing plant materials on ruminant production - a review. J. Agric. Food Chem. 53:8093-8105   DOI   ScienceOn
28 Guan, H., K. M. Wittenberg, K. H. Ominski and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906   DOI   ScienceOn
29 Vogels, G. D., W. Hoppe and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608-612   PUBMED   ScienceOn
30 Intergovernmental Panel on Climate Change (IPCC). 2001. Climate change 2001: a scientific basis, intergovernmental panel on climate change (Ed. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, C. A. Johnson and K. Maskell). Cambridge University Press
31 Calsamiglia, S., M. Busquet, P. W. Cardozo, L. Castillejos and A. Ferret. 2007. Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 90:2580-2595   DOI   ScienceOn
32 Russell, J. B. and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1-6   PUBMED   ScienceOn