DOI QR코드

DOI QR Code

Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations

  • Lee, Shin Ja (Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University) ;
  • Shin, Nyeon Hak (Livestock Experiment Station, Gyeongsangnamdo Livestock Promotion Research Institute) ;
  • Jeong, Jin Suk (Division of Applied Life Science (BK21 program) and Institute of Agriculture & Life Science (IALS), Gyeongsang National University) ;
  • Kim, Eun Tae (National Institute of Animal Science, RDA) ;
  • Lee, Su Kyoung (Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University) ;
  • Lee, Sung Sill (Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University)
  • Received : 2017.08.21
  • Accepted : 2017.11.04
  • Published : 2018.01.01

Abstract

Objective: Due to the threat of global warming, the livestock industry is increasingly interested in exploring how feed additives may reduce anthropogenic greenhouse gas emissions, especially from ruminants. This study investigated the effect of Rhodophyta supplemented bovine diets on in vitro rumen fermentation and rumen microbial diversity. Methods: Cannulated Holstein cows were used as rumen fluid donors. Rumen fluid:buffer (1:2; 15 mL) solution was incubated for up to 72 h in six treatments: a control (timothy hay only), along with substrates containing 5% extracts from five Rhodophyta species (Grateloupia lanceolata [Okamura] Kawaguchi, Hypnea japonica Tanaka, Pterocladia capillacea [Gmelin] Bornet, Chondria crassicaulis Harvey, or Gelidium amansii [Lam.] Lamouroux). Results: Compared with control, Rhodophyta extracts increased cumulative gas production after 24 and 72 h (p = 0.0297 and p = 0.0047). The extracts reduced methane emission at 12 and 24 h (p<0.05). In particular, real-time polymerase chain reaction analysis indicated that at 24 h, ciliate-associated methanogens, Ruminococcus albus and Ruminococcus flavefaciens decreased at 24 h (p = 0.0002, p<0.0001, and p<0.0001), while Fibrobacter succinogenes (F. succinogenes) increased (p = 0.0004). Additionally, Rhodophyta extracts improved acetate concentration at 12 and 24 h (p = 0.0766 and p = 0.0132), as well as acetate/propionate (A/P) ratio at 6 and 12 h (p = 0.0106 and p = 0.0278). Conclusion: Rhodophyta extracts are a viable additive that can improve ruminant growth performance (higher total gas production, lower A/P ratio) and methane abatement (less ciliateassociated methanogens, Ruminococcus albus and Ruminococcus flavefaciens and more F. succinogenes.

Keywords

References

  1. Denman K, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, et al. Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007. pp. 499-587.
  2. Wuebbles DJ, Hayhoe K. Atmospheric methane and global change. Earth Sci Rev 2002;57:177-210. https://doi.org/10.1016/S0012-8252(01)00062-9
  3. Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 2012;184:1929-52. https://doi.org/10.1007/s10661-011-2090-y
  4. Grainger C, Beauchemin KA. Can enteric methane emissions from ruminants be lowered without lowering their production. Anim Feed Sci Technol 2011;166-67:308-20.
  5. Kamra DN, Agarwal N, Chaudhary LC. Inhibition of ruminal methanogenesis by tropical plants con- taining secondary compounds. Int Congr Ser 2006;1293:156-63. https://doi.org/10.1016/j.ics.2006.02.002
  6. MacArtain P, Gill CIR, Brooks M, et al. Nutritional value of edible seaweeds. Nutr Rev 2007;65:535-43. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
  7. Chopin T, Sawhney M. Seaweeds and their mariculture. In: Steele JH, Thorpe SA, Turekian KK, editors. The encyclopedia of ocean sciences. Oxford, UK: Elsevier; 2009. pp. 4477-87.
  8. Paul N, Tseng CK. Seaweed. In: Lucas JS, Southgate PC, editors. Aquaculture: farming aquatic animals and plants, 2nd edition. Oxford, UK: Blackwell publishing Ltd.; 2012. pp. 268-84.
  9. Chowdhury S, Huque K, Khatun M. Algae in animal production. Agracultural Science of Biodiversity and Sustainability Workshop, Tune Landboskole, Denmark; 1995. pp. 3-7.
  10. Bozic A, Anderson R, Carstens G, et al. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, $Lauricidin^{(R)}$ and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Biore Technol 2009;100:4017-25. https://doi.org/10.1016/j.biortech.2008.12.061
  11. Plaza M, Cifuentes A, Ibanez E. In the search of new functional food ingredients from algae. Trends Food Sci Technol 2008;19:31-9. https://doi.org/10.1016/j.tifs.2007.07.012
  12. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011;23:543-97. https://doi.org/10.1007/s10811-010-9632-5
  13. Denman SE, McSweeney CS. Development of a Real-Time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006;58:572-82.
  14. Skillman LC, Toovey AF, Williams AJ, et al. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between Entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol 2006;72:200-6. https://doi.org/10.1128/AEM.72.1.200-206.2006
  15. Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313-22. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  16. Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Ecol 2001;204:361-6.
  17. SAS Institute Inc. SAS/STAT user's guide: version 9.2 edn. Cary, NC, USA: SAS Institute Inc.; 2002.
  18. Ha JK, Lee SS, Moon YS, et al. Ruminant nutrition and physiology. Seoul, Korea: Seoul National University Press; 2005.
  19. Denis C, Morancais M, Li M, et al. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). J Food Chem 2010;119:913-7. https://doi.org/10.1016/j.foodchem.2009.07.047
  20. Dubois B, Tomkins NW, Kinley RD, et al. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34-43. https://doi.org/10.4236/ajps.2013.412A2005
  21. Kim ET, Lee SJ, Guan LL, et al. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas J Anim Sci 2015;28:530-7. https://doi.org/10.5713/ajas.14.0692
  22. Ntaikou I, Gavala HN, Kornaros M, et al. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 2008;33:1153-63.
  23. Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 1977;34:297-301.
  24. Chaucheyras-Durand F, Masseglia S, Fonty G, et al. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl Environ Microbiol 2010;76:7931-7. https://doi.org/10.1128/AEM.01784-10
  25. Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci 2008;21:144-54. https://doi.org/10.5713/ajas.2008.r01
  26. Martin C, Morgavi DP, Doreau M. Methane mitigation in ruminants: from microbe to the farm scale. Anim 2010;4:351-65. https://doi.org/10.1017/S1751731109990620
  27. Davyt D, Fernandez R, Suescun L, et al. New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination, and anthelmintic activity. J Nat Prod 2001;64:1552-5 https://doi.org/10.1021/np0102307
  28. Cabrita MT, Vale C, Rauter AP. Halogenated compounds from marine algae. Mar Drugs 2010;8:2301-17. https://doi.org/10.3390/md8082301
  29. Mehrez AZ, Orskov ER, Mcdonald I. Rates of rumen fermentation in relation to ammonia concentration. Br J Nutr 1977;38:437-43. https://doi.org/10.1079/BJN19770108
  30. Larsen M, Kristensen NB. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. J Dairy Sci 2009;92:3306-18. https://doi.org/10.3168/jds.2008-1889

Cited by

  1. Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations vol.32, pp.12, 2018, https://doi.org/10.5713/ajas.19.0092
  2. In vitro and in situ evaluation of Undaria pinnatifida as a feed ingredient for ruminants vol.32, pp.1, 2018, https://doi.org/10.1007/s10811-019-01910-w
  3. Research progress on the application of feed additives in ruminal methane emission reduction: a review vol.9, pp.None, 2018, https://doi.org/10.7717/peerj.11151
  4. The effect of Macleaya cordata extract on in vitro ruminal fermentation and methanogenesis vol.9, pp.8, 2018, https://doi.org/10.1002/fsn3.2436
  5. Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives Towards a Cleaner Ecosystem vol.12, pp.9, 2018, https://doi.org/10.1007/s12649-021-01347-8
  6. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-03356-y