• Title/Summary/Keyword: Metal-Oxide-Semiconductor Field-Effect transistor (MOSFET)

Search Result 128, Processing Time 0.025 seconds

A Methodology of Dual Gate MOSFET Dosimeter with Compensated Temperature Sensitivity

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • MOS (Metal-Oxide Semconductor) devices among the most sensistive of all semiconductors to radiation, in particular ionizing radiation, showing much change even after a relatively low dose. The necessity of a radiation dosimeter robust enough for the working environment has increased in the fields of aerospace, radio-therapy, atomic power plant facilities, and other places where radiation exists. The power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) has been tested for use as a gamma radiation dosimeter by measuring the variation of threshold voltage based on the quantity of dose, and a maximum total dose of 30 krad exposed to a $^{60}Co$ ${\gamma}$-radiation source, which is sensitive to environment parameters such as temperature. The gate oxide structures give the main influence on the changes in the electrical characteristics affected by irradiation. The variation of threshold voltage on the operating temperature has caused errors, and needs calibration. These effects can be overcome by adjusting gate oxide thickness and implanting impurity at the surface of well region in MOSFET.

A Methodology of Radiation Measurement of MOSFET Dosimeter (MOSFET 검출기의 방사선 측정 기법)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kang, Phil-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.159-162
    • /
    • 2009
  • The necessity of radiation dosimeter with precise measurement of radiation dose is increased and required in the field of spacecraft, radiotheraphy hospital, atomic plant facility, etc. where radiation exists. Until now, a low power commercial metal-oxide semiconductor(MOS) transistor has been tested as a gamma radiation dosimeter. The measurement error between the actual value and the measurement one can occur since the MOSFET(MOS field-effect transistor) dosimeter, which is now being used, has two gates with same width. The measurement value of dosimeter depends on the variation of threshold voltage, which can be affected by the environment such as temperature. In this paper, a radiation dosimeter having a pair of MOSFET is designed in the same silicon substrate, in which each of the MOSFETs is operable in a bias mode and a test mode. It can measure the radiation dose by the difference between the threshold voltages regardless of the variation of temperature.

  • PDF

A Study on Parameters for Design of IGBT (IGBT 설계 Parameter 연구)

  • Lho, Young-Hwan;Lee, Sang-Yong;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1943-1950
    • /
    • 2009
  • The development of high voltage Insulated Gate Bipolar Transistor (IGBT) have given new device advantage in the areas where they compete with conventional GTO (Gate Turnoff Thyristor) technology. The IGBT combines the advantages of a power MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) and a bipolar power transistor. The change of electrical characteristics for IGBT is mainly coming from the change of characteristics of MOSFET at the input gate and the PNP transistors at the output. The gate oxide structure gives the main influence on the changes in the electrical characteristics affected by environments such as radiation and temperature, etc.. The change of threshold voltage, which is one of the important design parameters, is brought by charge trapping at the gate oxide. In this paper, the electrical characteristics are simulated by SPICE simulation, and the parameters are found to design optimized circuits.

  • PDF

Preparation of Epoxy/Organoclay Nanocomposites for Electrical Insulating Material Using an Ultrasonicator

  • Park, Jae-Jun;Park, Young-Bum;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.93-97
    • /
    • 2011
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a 0.35 ${\mu}M$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and 1.5 ${\mu}M$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($I_{SUB}$), drain to source leakage current ($I_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

A Study on the Design of Voltage Mode PWM DC/DC Power Converter (전압모드 PWM DC/DC 전력 컨버터 설계연구)

  • Lho, Young-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.411-415
    • /
    • 2011
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltages with high efficiencies from different DC input sources. The voltage mode DC/DC converter utilizes MOSFET (metal-oxide semiconductor field effect transistor), inductor, and a PWM (pulse-width modulation) controller with oscillator, amplifier, and comparator, etc. to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter and a buck converter containing a switched-mode power supply are studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by program of SPICE, and the PWM controller is implemented to check the operation. In addition, power efficiency is analyzed based on the specification of each component.

Effects of Doping Concentration of Polycrystalline Silicon Gate Layer on Reliability Characteristics in MOSFET's (MOSFET에서 다결정 실리콘 게이트 막의 도핑 농도가 신뢰성에 미치는 영향)

  • Park, Keun-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.74-79
    • /
    • 2018
  • In this report, the results of a systematic study on the effects of polycrystalline silicon gate depletion on the reliability characteristics of metal-oxide semiconductor field-effect transistor (MOSFET) devices were discussed. The devices were fabricated using standard complimentary metal-oxide semiconductor (CMOS) processes, wherein phosphorus ion implantation with implant doses varying from $10^{13}$ to $5{\times}10^{15}cm^{-2}$ was performed to dope the polycrystalline silicon gate layer. For implant doses of $10^{14}/cm^2$ or less, the threshold voltage was increased with the formation of a depletion layer in the polycrystalline silicon gate layer. The gate-depletion effect was more pronounced for shorter channel lengths, like the narrow-width effect, which indicated that the gate-depletion effect could be used to solve the short-channel effect. In addition, the hot-carrier effects were significantly reduced for implant doses of $10^{14}/cm^2$ or less, which was attributed to the decreased gate current under the gate-depletion effects.

Simulation of Quantum Effects in the Nano-scale Semiconductor Device

  • Jin, Seong-Hoon;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2004
  • An extension of the density-gradient model to include the non-local transport effect is presented. The governing equations can be derived from the first three moments of the Wigner distribution function with some approximations. A new nonlinear discretization scheme is applied to the model to reduce the discretization error. We also developed a new boundary condition for the $Si/SiO_2$ interface that includes the electron wavefunction penetration into the oxide to obtain more accurate C-V characteristics. We report the simulation results of a 25-nm metal-oxide-semiconductor field-effect transistor (MOSFET) device.

InxGa1-xAs 화합물 반도체의 Indium 조성에 따른 Nanowire Field-Effect Transistor 특성 연구

  • Lee, Hyeon-Gu;Seo, Jun-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.428-432
    • /
    • 2017
  • Silicon 기반 Metal-oxide-semiconductor field-effect transistor (MOSFET)의 크기가 감소함에 따라 silicon자체의 물성적 한계가 나타나고 있다. 이를 극복하고자 III-V 화합물 반도체가 채널소자로서 각광받고 있다. 본 연구에서는 III-V 화합물반도체 중 $In_xGa_{1-x}As$는 Indium 조성에 따른 전자구조 및 n-type MOSFET의 소자 특성을 본다. Indium의 조성이 증가함에 따라 subband의 개수와 간격이 증가하게 되어 Density of state가 감소하게 된다. 이로 인하여 Indium의 조성이 증가함에 따라 $In_xGa_{1-x}As$ 채널 MOSFET에서 상대적으로 Fermi level을 더 많이 상승시키게 되어 potential barrier를 얇아지게 만들며 또한 에너지에 따른 전류 밀도를 넓게 분포하도록 만든다. 이로 인하여 단채널에서는 In 조성이 증가함에 따라 direct source-to-drain tunnelling current이 증가하게 된다. 이로 인하여 In 조성의 증가에 따라 subthreshold swing과 ON-state current가 저하된다.

  • PDF

Wide Dynamic Range CMOS Image Sensor with Adjustable Sensitivity Using Cascode MOSFET and Inverter

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • In this paper, a wide dynamic range complementary metal-oxide-semiconductor (CMOS) image sensor with the adjustable sensitivity by using cascode metal-oxide-semiconductor field-effect transistor (MOSFET) and inverter is proposed. The characteristics of the CMOS image sensor were analyzed through experimental results. The proposed active pixel sensor consists of eight transistors operated under various light intensity conditions. The cascode MOSFET is operated as the constant current source. The current generated from the cascode MOSFET varies with the light intensity. The proposed CMOS image sensor has wide dynamic range under the high illumination owing to logarithmic response to the light intensity. In the proposed active pixel sensor, a CMOS inverter is added. The role of the CMOS inverter is to determine either the conventional mode or the wide dynamic range mode. The cascode MOSFET let the current flow the current if the CMOS inverter is turned on. The number of pixels is $140(H){\times}180(V)$ and the CMOS image sensor architecture is composed of a pixel array, multiplexer (MUX), shift registers, and biasing circuits. The sensor was fabricated using $0.35{\mu}m$ 2-poly 4-metal CMOS standard process.

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide

  • Sun, Min-Chul;Kim, Hyun Woo;Kim, Hyungjin;Kim, Sang Wan;Kim, Garam;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.