• 제목/요약/키워드: Metabolic flux

검색결과 109건 처리시간 0.028초

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • 조광명
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Metabolic Flux Analysis of a Poly-${\beta}$-hydroxybutyrate Producing Cyanobacterium, Synechococcus sp. MA19, Grown under Photoautotrophic Conditions

  • Nishioka, Motomu;Nishiuma, Hajime;Miyake, Masato;Asada, Yasuo;Shimizu, Kazuyuki;Taya, Masahito
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.295-302
    • /
    • 2002
  • To understand the utilization property of light energy, Synechococcus sp. MA19, a poly-${\beta}$-hydroxybutyrate (PHB) producer, was cultivated at the different incident light intensities of 15.3, 50.0 and 78.2 W/$m^2$ using media with and without phosphate. From the results of metabolic flux analysis, it was found that the cell yield based on ATP synthesis was estimated as $3.5{\times}10^{-3}$ kg-biomass/mol-ATP in these cultures. Under the examined conditions, there were no significant differences in the efficiency of light energy conversion to chemical energies estimated as ATP synthesis and reducing potential (NADH + NADPH) formation whether the PHB synthesis took place or not. The energy converted from light to ATP was kept relatively high around the energy absorbed by the cells of $2.5-3.0{\times}10^{6} J\;h^{-1}\;kg^{-1}$, whereas the energy of reducing potential was hardly changed in the examined range of the energy absorbed by the cells.

Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel

  • PARK, SUN-MI;KANG, HYE-SUN;PARK, DAE-WON;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.80-85
    • /
    • 2005
  • Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/$NAD^+$) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Exploring the Effects of Carbon Sources on the Metabolic Capacity for Shikimic Acid Production in Escherichia coli Using In Silico Metabolic Predictions

  • Ahn, Jung-Oh;Lee, Hong-Weon;Saha, Rajib;Park, Myong-Soo;Jung, Joon-Ki;Lee, Dong-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1773-1784
    • /
    • 2008
  • Effects of various industrially important carbon sources (glucose, sucrose, xylose, gluconate, and glycerol) on shikimic acid (SA) biosynthesis in Escherichia coli were investigated to gain new insight into the metabolic capability for overproducing SA. At the outset, constraints-based flux analysis using the genome-scale in silico model of E. coli was conducted to quantify the theoretical maximum SA yield. The corresponding flux distributions fueled by different carbon sources under investigation were compared with respect to theoretical yield and energy utilization, thereby identifying the indispensable pathways for achieving optimal SA production on each carbon source. Subsequently, a shikimate-kinase-deficient E. coli mutant was developed by blocking the aromatic amino acid pathway, and the production of SA on various carbon sources was experimentally examined during 51 batch culture. As a result, the highest production rate, 1.92 mmol SA/h, was obtained when glucose was utilized as a carbon source, whereas the efficient SA production from glycerol was obtained with the highest yield, 0.21 mol SA formed per mol carbon atom of carbon source consumed. The current strain can be further improved to satisfy the theoretically achievable SA production that was predicted by in silico analysis.

Enhanced Production of Succinic Acid by Metabolically Engineered Escherichia coli with Amplified Activities of Malic Enzyme and Fumarase

  • Hong, Soon-Ho;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권4호
    • /
    • pp.252-255
    • /
    • 2004
  • A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

Quantitative and qualitative analysis of autophagy flux using imaging

  • Kim, Suree;Choi, Soohee;Kang, Dongmin
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.241-247
    • /
    • 2020
  • As an intracellular degradation system, autophagy is an essential and defensive cellular program required for cell survival and cellular metabolic homeostasis in response to various stresses, such as nutrient deprivation and the accumulation of damaged organelles. In general, autophagy flux consists of four steps: (1) initiation (formation of phagophore), (2) maturation and completion of autophagosome, (3) fusion of autophagosomes with lysosomes (formation of autolysosome), and (4) degradation of intravesicular components within autolysosomes. The number of genes and reagents that modulate autophagy is increasing. Investigation of their effect on autophagy flux is critical to understanding the roles of autophagy in many physiological and pathological processes. In this review, we summarize and discuss ways to analyze autophagy flux quantitatively and qualitatively with the use of imaging tools. The suggested imaging method can help estimate whether each modulator is an inhibitor or a promoter of autophagy and elucidate the mode of action of specific genes and reagents on autophagy processes.

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

대장균의 UDP-glucose regeneration 시스템을 이용한 이당류 합성에 관한 연구 (Disaccharide Synthesis using E. coli UDP-glucose regeneration system)

  • 오정석
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.474-478
    • /
    • 2008
  • 효율적인 UDP-glucose regeneration system을 구축하기 위해서 재순환 시스템에 관여하는 4가지 효소 (UDP-glucose pyrophosphorylase, UDP-Kinase gene, UDP-galactose 4-epimerase, and $\beta$-1, 4-galactasyltrasnsferase)들을 E. coli AD202에서 발현 시켜 Disaccharide 합성 정도를 보았다. Disaccharide는 0.5 mM IPTG 농도에서 가장 높은 농도를 나타내었다. 대조구와 비교한 결과 LacNAc 농도는 1.34 mM로 10배 정도 정가하였고, lactose 농도는 0.39 mM로 대조구보다 2.6배 증가하였다. 총 disaccharide 농도는 1.73 mM 이며, 대조구 보다 6.5배 높은 생산성을 보였다. 본 논문은 결과는 metabolic flux regeneration으로 disaccharides 합성을 증가시킬 수 있다는 것을 보여주었다.