Browse > Article
http://dx.doi.org/10.4014/jmb.0700.705

Exploring the Effects of Carbon Sources on the Metabolic Capacity for Shikimic Acid Production in Escherichia coli Using In Silico Metabolic Predictions  

Ahn, Jung-Oh (Division of Biotechnology R&BD, Korea Research Institute of Bioscience and Biotechnology)
Lee, Hong-Weon (Division of Biotechnology R&BD, Korea Research Institute of Bioscience and Biotechnology)
Saha, Rajib (Department of Chemical and Biomolecular Engineering, National University of Singapore)
Park, Myong-Soo (Division of Biotechnology R&BD, Korea Research Institute of Bioscience and Biotechnology)
Jung, Joon-Ki (Division of Biotechnology R&BD, Korea Research Institute of Bioscience and Biotechnology)
Lee, Dong-Yup (Department of Chemical and Biomolecular Engineering, National University of Singapore)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.11, 2008 , pp. 1773-1784 More about this Journal
Abstract
Effects of various industrially important carbon sources (glucose, sucrose, xylose, gluconate, and glycerol) on shikimic acid (SA) biosynthesis in Escherichia coli were investigated to gain new insight into the metabolic capability for overproducing SA. At the outset, constraints-based flux analysis using the genome-scale in silico model of E. coli was conducted to quantify the theoretical maximum SA yield. The corresponding flux distributions fueled by different carbon sources under investigation were compared with respect to theoretical yield and energy utilization, thereby identifying the indispensable pathways for achieving optimal SA production on each carbon source. Subsequently, a shikimate-kinase-deficient E. coli mutant was developed by blocking the aromatic amino acid pathway, and the production of SA on various carbon sources was experimentally examined during 51 batch culture. As a result, the highest production rate, 1.92 mmol SA/h, was obtained when glucose was utilized as a carbon source, whereas the efficient SA production from glycerol was obtained with the highest yield, 0.21 mol SA formed per mol carbon atom of carbon source consumed. The current strain can be further improved to satisfy the theoretically achievable SA production that was predicted by in silico analysis.
Keywords
Shikimic acid production; constraints-based flux analysis; genome-scale in silico model; Escherichia coli; carbon sources;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Bare-Viveros, J. L., J. Osuna, G. Hernandez-Chavez, X. Soberon, F. Bolivar, and G. Gosset. 2004. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol. Bioeng. 87: 516-524   DOI   ScienceOn
2 Johansson, L., A. Lindskog, G. Silfversparre, C. Cimander, K. F. Nielsen, and G. Liden. 2005. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphatelimited and carbon-limited conditions. Biotechnol. Bioeng. 92: 541-552   DOI   ScienceOn
3 Reed, J. L. and B. O. Palsson. 2004. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: Assessment of correlated reaction subsets that comprise network states. Genome Res. 14: 1797-1805   DOI   ScienceOn
4 Sumiya, M., E. O. Davis, L. C. Packman, T. P. McDonald, and P. J. Henderson. 1995. Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF in Escherichia coli. Receptors Channels 3: 117-128
5 Schuetz, R., L. Kuepfer, and U. Sauer. 2007. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 1-15
6 Patnaik, R. and J. C. Liao. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 6: 3903-3908
7 Weaver, L. M. and K. M. Herrmann. 1990. Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabionheptulosonate 7-phosphate synthase. J. Bacteriol. 172: 6581-6584   DOI
8 Draths, K. M., D. L. Phmpliano, D. L. Conley, J. W. Frost, A. Berry, G. L. Disbrow, R. J. Staversk, and J. C. Lievense. 1992. Biocatalytic synthesis of aromatics from D-glucose: The role of transketolase. J. Am. Chem. Soc. 114: 3956-3962   DOI
9 Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbetl, V. Hatzimanikatis, and B. O. Palsson. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 1-18
10 Miller, J. E., K. C. Backman, J. M. O'Connor, and T. R. Hatch. 1987. Production of phenylalanine and organic acids by phosphoenolpyruvate carboxylase-deficient mutants of Escherichia coli. J. Ind. Microbiol. 2: 143-149   DOI
11 Lu, J. and J. C. Liao. 1997. Metabolic engineering and control analysis for production of aromatics: Role of transaldolase. Biotechnol. Bioeng. 53: 132-138   DOI   ScienceOn
12 Draths, K., D. R. Knop, and J. W. Frost. 1999. Shikimic acid and quininc acid: Replacing isolation from plant sources with recombinant microbial biocatalysis. J. Am. Chem. Soc. 121: 1603-1604   DOI   ScienceOn
13 Driessen, M., P. W. Postma, and K. van Dam. 1987. Energetics of glucose uptake in Salmonella typhimurium. Arch. Microbiol. 146: 358-361   DOI   ScienceOn
14 Flores, N., J. Xiao, A. Berry, F. Bolivar, and F. Valle. 1996. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat. Biotechnol. 14: 620-623   DOI   ScienceOn
15 Kim, C. U., W. Lew, M. A. Williams, L. Zhang, H. Liu, S. Swaminathan, et al. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogs with potent anti-influenza activity. J. Am. Chem. Soc. 119: 681-690   DOI   ScienceOn
16 Chandran, S. S., J. Yi, and K. M. Draths. 2003. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19: 808-814   DOI   ScienceOn
17 Pharkya, P., A. P. Burgard, and C. D. Maranas. 2003. Exploring the overexpression of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84: 887-899   DOI   ScienceOn
18 Gosset, G., J. Yong-Xiao, and A. Beery. 1996. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J. Ind. Microbiol. 17: 47-52   DOI   ScienceOn
19 Hendereson, P. J. and E. O. Davis. 1987. The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J. Biol. Chem. 262: 13928-13932
20 Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571-577
21 Patnaik, R., W. D. Roof, R. F. Young, and J. C. Liao. 1992. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J. Bacteriol. 174: 7527-7532   DOI
22 Yi, J., K. Li, K. M. Draths, and J. W. Frost. 2002. Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol. Prog. 18: 1141-1148   DOI   ScienceOn
23 Honisch, C., A. Raghunathan, C. R. Cantor, B. O. Palsson, and D. van den Boom. 2004. High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12. Genome Res. 14: 2495-2502   DOI   ScienceOn
24 Schmid, K., M. Schupfner, and R. Schmitt. 1982. Plasmidmediated uptake and sucrose metabolism in Escherichia coli K12: Mapping of the scr genes of pUR400. Mol. Microbiol. 2: 1-8   DOI   ScienceOn
25 Varma, A. and B. O. Palsson. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60: 3724-3731
26 Yi, J., K. M. Draths, and J. W. Frost. 2003. Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol. Prog. 19: 1450-1459   DOI   ScienceOn
27 Knop, D. R., K. M. Draths, S. S. Chandra, J. L. Barker, R. V. Daeniken, W. Weber, and J. W. Frost. 2001. Hydroaromatic equilibration during biosynthesis of shikimic acid. J. Am. Chem. Soc. 123: 10173-10182   DOI   ScienceOn
28 Bockmann, J., H. Heuwl, and J. W. Lengeler. 1992. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol. Gen. Genet. 235: 22-32   DOI   ScienceOn
29 Bradley, D. 2005. Star role for bacteria in controlling flu pandemic? Nat. Rev. Drug Discov. 4: 945-946   DOI   ScienceOn
30 De Clercq, E. 2002. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1: 13-25   DOI   ScienceOn
31 Stephanopoulos, G. and J. J. Vallino. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252: 1675-1681   DOI
32 Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645
33 Kim, P. J., D.-Y. Lee, T. Y. Kim, K. H. Lee, H. Jeong, S. Y. Lee, and S. Park. 2007. Metabolite-essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA 104: 13638-13642
34 Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson. 2003. An expanded genome-scale model of Escherichia coli K- 12(iJR904 GSM/GPR). Genome Biol. 4: R54.1-R54.12   DOI
35 Lee, D.-Y., H. Yun, S. Park, and S. Y. Lee. 2003. MetaFluxNet: The management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144-2146   DOI   ScienceOn