Browse > Article

Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel  

PARK, SUN-MI (Department of Biological Engineering, Seokyeong University)
KANG, HYE-SUN (Department of Biological Engineering, Seokyeong University)
PARK, DAE-WON (Division of Water Environment and Remediation, KIST)
PARK, DOO-HYUN (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.1, 2005 , pp. 80-85 More about this Journal
Abstract
Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/$NAD^+$) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.
Keywords
Weissella kimchii; metabolic flux shift; electrochemical oxidation-reduction (redox); $NR_red$ (reduced form of neutral red); $NR_ox$ (oxidized form of neutral red);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Hongo, M. and M. Iwahara. 1979. Application of electronenergizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43A: 2075- 2081   DOI
2 Kang, H. S. and D. H. Park. 2004. Biocatalytic oxidationreduction of pyruvate and ethanol by Weissella kimchii sk10 under aerobic and anaerobic condition. J. Microbiol. Biotechnol. 14: 914-918
3 Kim, B. H. and J. G. Zeikus. 1992. Hydrogen metabolism in Clostridium acetobutylicum fermentation. J. Microbiol. Biotechnol. 2: 2771- 2776
4 Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membranebound NADH: Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical. J. Microbiol. Biotechnol. 13: 225- 229
5 Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292- 1297   DOI   ScienceOn
6 Park, S. M. and D. H. Park. 2004. Metabolic flux shift of Weissella kimchii sk10 grown under aerobic conditions. J. Microbiol. Biotechnol.14: 919-923   과학기술학회마을
7 Schlereth, D. D. and V. M. Fernandez. 1992. Direct electron transfer between Alcaligenes eutrophus Z-1 hydrogenase and glassy carbon electrodes. Bioelectrochem. Bioenerg, 28: 473- 482   DOI   ScienceOn
8 Surya, A., N. Murthy, and S. Anita. 1994. Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg. 33: 71-73   DOI   ScienceOn
9 Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100- 180
10 Thestrup, H. N. and B. Hahn-Hagerdal. 1995. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomycess cerevisiae expressing the xyll gene. Appl. Environ. Microbiol. 61: 2043- 2045   PUBMED
11 Varma, A. and B. O. Palsson. 1994. Metabolic flux balancing: Basic concepts, scientific and practical use. Review. Bio/ Technology 12: 994- 998   DOI
12 Xie, Y. and S. Dong. 1992. Effects of pH on the electron transfer of cytochrome-c on a gold electrode modified with bis(4pyridyl) disulphide. Bioelectrochem. Bioenerg. 29: 71-79   DOI   ScienceOn
13 Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: Description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595- 603   DOI
14 Kemner, J. M. and J. G. Zeikus. 1992. Purification and characterization of membrane-bound hydrogenase from Methanosarcina barkeri MS. Arch. Microbiol. 161: 47- 54   DOI   ScienceOn
15 Wissenbach, U. A. Kroger, and G. Unden. 1990. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154: 60- 66
16 Sucheta, A., R. Cammack, J. H. Weiner, and F. A. Armstrong. 1993. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observation of redox centers and their participation in rapid catalytic electron transport. Biochemistry 32: 5455- 5465   DOI   ScienceOn
17 Girbal, L., I. Vasconcelos, A. Silvie Saint, and P. Soucaille. 1995. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol. Rev. 16: 151-162   DOI
18 Dickie, P. and J. Weiner. 1979. Purification and characterization of membrane-bound fumarate reductase from anaerobically grown Escherichia coli. Can. J. Biochem. 57: 813- 821   DOI
19 Willner, I., E. Katz, and N. Lapidot. 1992. Bioelectrocatalysed reduction of nitrate utilizing poly thiophene bipyridium enzyme electrodes. Bioelectrochem. Bioenerg. 29: 29-45   DOI   ScienceOn
20 Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $CO_{2}-HCO^{-}_{3}$ levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succinidiproducens. Appl. Environ. Microbiol. 57: 3013- 3019   PUBMED
21 Miyawaki, O. and T. Yano. 1992. Electrochemical bioreactor with regeneration of $NAD^{+}$ by rotating graphite disk electrode with PMS absorbed. Enzyme Microb. Technol 14: 474- 478   DOI   ScienceOn
22 Kim, T. W., J. Y. Lee, S. H. Jung, Y. M. Kim, J. S. Jo, D. K. Chung, H. J. Lee, and H. Y. Kim. 2002. Identification and distribution of predominant lactic acid bacteria in kimchi, a Korean traditional fermented food. J. Microbiol. Biotechnol. 12: 635- 642
23 Millard, C. S., Y. P. Chao, J. C. Liao, and M. I. Donnelly. 1996. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl. Environ. Microbiol. 62: 1808- 1810
24 Kotner, C., F. Lauterbach, D. Tripier, G. Unden, and A. Kroger. 1990. Wolinella succinogenes fumarate reductase contains a dihaem cytochrome b. Mol. Microbiol. 4: 855- 860   DOI   ScienceOn
25 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403- 2410   PUBMED
26 Cecchini, G., C. R. Thompson, B. A. Ackrell, D. J. Westenberg, N. Dean, and R. P. Gunsalus. 1986. Oxidation of reduced meanquinone by the fumarate reductase complex in Escherichia coli requires the hydrophobic FrdD peptide. Proc. Natl. Acad. Sci. USA 83: 8898- 8902   DOI
27 Hongo, M. and M. Iwahara. 1979. Determination of electroenergizing conditions for L-glutamic acid fermentation. Agric. Biol. Chem. 43B: 2083- 2086   DOI
28 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing from microbial degradation. Biotechnol. Bioeng, 81: 348- 355   DOI   ScienceOn
29 Sanchez, S., A. Arratia, R. Cordova. H. Gomez, and R. Schrebler. 1995. Electron transport in biological processes. II. Electrochemical behavior of Q10 immersed in a phospholipid matrix added on a pyrolytic graphite electrode. Bioelectrochem. Bioenerg, 36: 67-71   DOI   ScienceOn
30 Hong, S. H., S. Y. Moon, and S. Y. Lee. 2003. Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. J. Microbiol. Biotechnol. 13: 571- 577   과학기술학회마을
31 White, H., H. Lebertz, I. Thanons, and H. Simon. 1987. Clostridium thermoaceticum production of methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiol. Lett. 43: 173- 176   DOI   ScienceOn
32 Wissenbach, U., D. Thernes, and G. Unden, 1992. An Escherichia coli mutant containing only demethylmenaquinone, but not menaquinone: Effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration. Arch. Microbiol. 158: 68-73   DOI   ScienceOn
33 Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim. 2003. Identification of lactic acid bacteria in kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119- 124   과학기술학회마을
34 Lee, J. W., A. Goel, M. M. Ataai, and M. M. Domach. 2002. Flux regulation patterns and energy audit of E. coli B/r and K-12. J. Microbiol. Biotechnol. 12: 258- 267   과학기술학회마을