Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.7.070

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load  

Niklas, Jens (Insilico Biotechnology AG)
Bonin, Anne (Insilico Biotechnology AG)
Mangin, Stefanie (Insilico Biotechnology AG)
Bucher, Joachim (Insilico Biotechnology AG)
Kopacz, Stephanie (Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tubingen)
Matz-Soja, Madlen (Institute of Biochemistry, Faculty of Medicine, University of Leipzig)
Thiel, Carlo (Institute of Biochemistry, Faculty of Medicine, University of Leipzig)
Gebhardt, Rolf (Institute of Biochemistry, Faculty of Medicine, University of Leipzig)
Hofmann, Ute (Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tubingen)
Mauch, Klaus (Insilico Biotechnology AG)
Publication Information
BMB Reports / v.45, no.7, 2012 , pp. 396-401 More about this Journal
Abstract
Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.
Keywords
Isotope labeling; Liver; Metabolic flux; Non-alcoholic fatty liver disease NAFLD; Steatosis; Transient $^{13}C$ MFA;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Gebhardt, R., Lerche, K. S., Götschel, F., Günther, R., Kolander, J., Teich, L., Zellmer, S., Hofmann, H.-J., Eger, K., Hecht, A. and Gaunitz, F. (2010) 4-Aminoethylaminoemodin- a novel potent inhibitor of GSK-3beta-acts as an insulin-sensitizer avoiding downstream effects of activated beta-catenin. J. Cell Mol. Med. 14, 1276-1293.   DOI   ScienceOn
2 Hofmann, U., Maier, K., Niebel, A., Vacun, G., Reuss, M. and Mauch, K. (2008) Identification of metabolic fluxes in hepatic cells from transient $^{13}C$-labeling experiments: Part I. Experimental observations. Biotechnol. Bioeng. 100, 344-354.   DOI   ScienceOn
3 Maier, K., Hofmann, U., Reuss, M. and Mauch, K. (2010) Dynamics and control of the central carbon metabolism in hepatoma cells. BMC Syst. Biol. 4, 54.   DOI   ScienceOn
4 Wu, H., Southam, A. D., Hines, A. and Viant, M. R. (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 372, 204-212.   DOI   ScienceOn
5 Maier, K., Hofmann, U., Bauer, A., Niebel, A., Vacun, G., Reuss, M. and Mauch, K. (2009) Quantification of statin effects on hepatic cholesterol synthesis by transient (13)C-flux analysis. Metab. Eng. 11, 292-309.   DOI   ScienceOn
6 Wiechert, W. (2001) $^{13}C$ metabolic flux analysis. Metab. Eng. 3, 195-206.   DOI   ScienceOn
7 Muller, C. L., Baumgartner, B., Ofenbeck, G., Schrader, B. and Sbalzarini, I. F. (2009) pCMALib: a parallel fortran 90 library for the evolution strategy with covariance matrix adaptation. pp. 1411-1418, In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (GECCO '09). ACM. NewYork, USA.
8 Niklas, J. and Heinzle, E. (2012) Metabolic flux analysis in systems biology of Mammalian cells. Adv. Biochem. Eng. Biotechnol. 127, 109-132.
9 Niklas, J., Schneider, K. and Heinzle, E. (2010) Metabolic flux analysis in eukaryotes. Curr. Opin. Biotechnol. 21, 63-69.   DOI   ScienceOn
10 Maier, K., Hofmann, U., Reuss, M. and Mauch, K. (2008) Identification of metabolic fluxes in hepatic cells from transient $^{13}C$-labeling experiments: Part II. Flux estimation. Biotechnol. Bioeng. 100, 355-370.   DOI   ScienceOn
11 Noh, K. and Wiechert, W. (2011) The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl. Microbiol. Biotechnol. 91, 1247-1265.   DOI
12 Swagell, C. D., Henly, D. C. and Morris, C. P. (2007) Regulation of human hepatocyte gene expression by fatty acids. Biochem. Biophys. Res. Commun. 362, 374-380.   DOI   ScienceOn
13 Swagell, C. D., Henly, D. C. and Morris, C. P. (2005) Expression analysis of a human hepatic cell line in response to palmitate. Biochem. Biophys. Res. Commun. 328, 432-441.   DOI   ScienceOn
14 Swagell, C. D., Morris, C. P. and Henly, D. C. (2006) Effect of fatty acids, glucose and insulin on hepatic glucose uptake and glycolysis. Nutrition 22, 672-678.   DOI   ScienceOn
15 Saltiel, A. R. and Kahn, C. R. (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
16 Akkaoui, M., Cohen, I., Esnous, C., Lenoir, V., Sournac, M., Girard, J. and Prip-Buus, C. (2009) Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Biochem. J. 420, 429-438.   DOI   ScienceOn
17 Fabbrini, E., Sullivan, S. and Klein, S. (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology 51, 679-689.   DOI   ScienceOn
18 Mollica, M. P., Lionetti, L., Moreno, M., Lombardi, A., De Lange, P., Antonelli, A., Lanni, A., Cavaliere, G., Barletta, A. and Goglia, F. (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J. Hepatol. 51, 363-370.   DOI   ScienceOn
19 Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D. and Parks, E. J. (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351.   DOI   ScienceOn
20 Brady, L. J., Brady, P. S., Romsos, D. R. and Hoppel, C. L. (1985) Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice. Biochem. J. 231, 439-444.   DOI
21 Serviddio, G., Bellanti, F., Tamborra, R., Rollo, T., Capitanio, N., Romano, A. D., Sastre, J., Vendemiale, G. and Altomare, E. (2008) Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia- reperfusion injury. Gut 57, 957-965.   DOI   ScienceOn
22 Fromenty, B. and Pessayre, D. (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 67, 101-154.   DOI   ScienceOn
23 Miele, L., Grieco, A., Armuzzi, A., Candelli, M., Forgione, A., Gasbarrini, A. and Gasbarrini, G. (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by $^{13}C$-octanoate breath test. Am. J. Gastroenterol. 98, 2335-2336.   DOI
24 Vial, G., Dubouchaud, H., Couturier, K., Cottet-Rousselle, C., Taleux, N., Athias, A., Galinier, A., Casteilla, L. and Leverve, X. M. (2011) Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J. Hepatol. 54, 348-356.   DOI   ScienceOn
25 Bradbury, M. W. (2006) Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G194-198.   DOI   ScienceOn
26 Malhi, H., Bronk, S. F., Werneburg, N. W. and Gores, G. J. (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281, 12093-12101.   DOI   ScienceOn
27 Bedogni, G., Miglioli, L., Masutti, F., Tiribelli, C., Marchesini, G. and Bellentani, S. (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42, 44-52.
28 Anderson, N. and Borlak, J. (2008) Molecular Mechanisms and Therapeutic Targets in Steatosis and Steatohepatitis. Pharmacological Reviews 60, 311-357.   DOI   ScienceOn