Enhanced Production of Succinic Acid by Metabolically Engineered Escherichia coli with Amplified Activities of Malic Enzyme and Fumarase

  • Hong, Soon-Ho (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering and Bioprocess Engineering Research Center) ;
  • Lee, Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering and Bioprocess Engineering Research Center, Department of Biosystems and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
  • Published : 2004.07.01

Abstract

A pfl ldhA double mutant Escherichia coli strain NZN 111 was used to produce succinic acid by overexpressing the E. coli malic enzyme gene (sfcA). This strain, however, produced a large amount of malic acid as well as succinic acid. After the analyses of the metabolic pathways, the fumB gene encoding the anaerobic fumarase of E. coli was co-amplified to solve the problem of malic acid accumulation. A plasmid, pTrcMLFu, was constructed, which contains an artificial operon (sfcA-fumB) under the control of the inducible trc promoter. From the batch culture of recombinant E. coli NZN 111 harboring pTrcMLFu, 7 g/L of succinic acid was produced from 20 g/L of glucose, with no accumulation of malic acid. From the metabolic flux analysis the strain was found under reducing power limiting conditions by severe reorientation of metabolic fluxes.

Keywords

References

  1. Microbiology v.143 The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli Bunch, P. K.;F. Mat-Jan;N. Lee;D. P. Clark https://doi.org/10.1099/00221287-143-1-187
  2. Annu. Rev. Microbiol. v.34 Chemical and fuel production by anaerobic bacteria Zeikus, J. G. https://doi.org/10.1146/annurev.mi.34.100180.002231
  3. FEMS Microbiol. Rev. v.63 The fermentation pathways of Escherichia coli Clark, D. P. https://doi.org/10.1016/0168-6445(89)90033-8
  4. Enzyme Microb. Technol. v.24 Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the H₂/CO₂supplying and glucose concentration Lee, P. C.;W. G. Lee;S. Kwon;S. Y. Lee;H. N. Chang;Y. K. Chang
  5. Biotechnol. Bioprocess Eng. v.5 Fermentative production of succinic acid from glucose and corn sttep liquor by Anaerobiosprillium succiniciproducens Lee, P. C.;W. G. Lee;S. Y. Lee;H. N. Chang;Y. K. Chang https://doi.org/10.1007/BF02942216
  6. Escherichia coli and Salmonella Neidhardt, F. C.
  7. Biotechnol. Bioprocess Eng. v.7 Cloning and characterization of mannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene Lee, P. C.;S. Y. Lee;S. H. Hong;H. N. Chang https://doi.org/10.1007/BF02935886
  8. Science v.252 Towards a science of metabolic engineering Bailey, J. E. https://doi.org/10.1126/science.2047876
  9. Biotechnol. Bioprocess Eng. v.7 Roles of glucose and acetate as carbon sources in L-histidine production with Brevibacterium flavum FERM1564 revealed by metabolic flux analysis Shimizu, H.;N. Shimizu;S. Shioya https://doi.org/10.1007/BF02932915
  10. Metabolic Enginering Lee, S. Y.;E. T. Papoutsakis
  11. Appl. Environ. Microbiol. v.62 no.5 Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli Millard, C. S.;T. Chao;J. C. Liao;M. I. Donnelly
  12. Appl. Environ. Microbiol. v.45 Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase Goldberg, I.;K. Lonberg-Holm;E. A. Bagley;B. Stieglitz
  13. Appl. Biochem. Biotechnol. v.70-72 Bioconversion of fumaric acid to succinic acid by recombinant E. coli Wang, X.;C. S. Gong;G. T. Tsao https://doi.org/10.1007/BF02920202
  14. Biotechnol. Bioeng. v.74 Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity Hong, S. H.;S. Y. Lee https://doi.org/10.1002/bit.1098
  15. Appl. Environ. Microbiol. v.63 Production of succinic acid through overexpression of $NAD^+$-dependent malic enzyme in an Escherichia coli mutant Stols, L.;M. I. Donnelly
  16. Science v.277 The complete genome sequence of Escherichia coli K-12 Blattner, F. R.;G. Plunkett;C. A. Bloch;N. T. Perna;V. Burland;M. Riley;J. Collado-Vides;J. D. Glasner;K. Rode;G. F. Mayhew;J. Gregor;N. W. Davis;H. A. Kirkpatrick;M. A. Goeden;D. I. Rose;B. Mau;Y. Shao https://doi.org/10.1126/science.277.5331.1453
  17. Bioreacton Engineering Principles Nielsen, J.;J. Villadsen
  18. J. Microbiol. Biotechnol. v.9 Metabolic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli Wong, H. H.;R. J. van Wegen;J. Choi;S. Y. Lee;A. P. J. Middelberg
  19. Biotechnol. Bioeng. v.56 Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements Pramankik, J.;J. D. Keasling https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
  20. Bioinformatics v.19 MetaFluxNet: the management of metabolic reaction information and quantitative metabolic fluxanalysis Lee, D. Y.;H. S. Yun;S. Y. Lee;S. Park https://doi.org/10.1093/bioinformatics/btg271
  21. Appl. Microbiol. Biotechnol. v.58 Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli Hong, S. H.;S. Y. Lee https://doi.org/10.1007/s00253-001-0899-y