Browse > Article

Disaccharide Synthesis using E. coli UDP-glucose regeneration system  

Oh, Jeong-Seok (School of Chemical and Biomolecular Engineering, Georgia Institute of Technology)
Publication Information
KSBB Journal / v.23, no.6, 2008 , pp. 474-478 More about this Journal
Abstract
UDP-glucose regeneration system using metabolic engineeringis unique and efficient strategy for oligosaccharide synthesis. To exploit the efficient UDP-glucose regeneration system, we introduced four enzymes, which would be important in partitioning the flux of UDP regenerationsuch as UDP-glucose pyrophosphorylase, UDP-Kinase gene, UDP-galactose 4-epimerase, and $\beta$-1, 4-galactasyltrasnsferase, into E. coli AD202. To determine the optimal expression level for UDP-regeneration, LacNAc concentration was compared depending on IPTG concentration. 0.5 mM IPTG induction showed the higher oligosaccharides synthesis. Using metabolic engineering under optimal IPTG induction, LacNAc synthesis of AD202/pQNGLU increased until 16 h and showed the 1.34 mM. This concentration is 10 times higher than that of control strain at same reaction time. Lactose of AD202/pQNGLU showed the maximum synthesis of 0.39 mM at 16 h and showed the 2.6 times higher than that of control strain.
Keywords
Metabolic engineering UDP-glucose regeneration; Oligosaccharide synthesis; E. coli whole-cell biocatalytic synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bailey, J. E. (1991), Toward a science of metabolic engineering. Science 252, 1668-1675   DOI
2 Ruffing, A., M. Zichao, and R. R. Chen. (2006), Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. Metabolic. Eng. 8, 465-473   DOI   ScienceOn
3 Nakano, H., T. Yamazaki, T. Ikeda, H. Masai, S. Miyataki, and L. Saito. (1994), Purification of glutathione S-transferase fusion proteins as a nondegraded form by using a protease-negative E. coli strain, AD202. Nucleic. Acids. Res. 22, 543-544   DOI
4 Endo, T. and S. Koizumi (2000), Large-scale production of oligosaccharides using engineered bacteria. Curr. Opin. Struct. Biol. 10, 536-541   DOI   ScienceOn
5 Ruffing, A. and R. R. Chen. (2006), Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories 5, 25   DOI   ScienceOn
6 Rozkov, A. Avignone-rossa, F. ERTL, Jones, D. O'kennedy, J. J. Smith, J. W. Dale, and M. E. Bushell. (2004), Characterization of the Metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909-915   DOI   ScienceOn
7 Flitsch, S. L. (2000), Chemical and enzymatic synthesis of glycopolymers. Curr. Opin. Chem. Biol. 4(6), 619-625   DOI   ScienceOn
8 Crout, D. H. and G. Vic (1998), Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr. Opin. Chem. Biol. 2(1), 98-111   DOI   ScienceOn
9 Sorensen, H. P. and K. K. Mortenson. (2005), Advanced genetic strategies for recombinant protein expression in E. coli. J. Biotechnol. 115, 113-128   DOI   ScienceOn
10 Flowers, H. M. (1978), Chemical synthesis of oligosaccharides. Methods Enzymol. 50, 93-121   DOI
11 Hokke, C. H., A. Zervosen, L. Ellig, D. H. Joziasse, and D. H. Van den Eijnden. (1996), One-pot enzymatic synthesis of the Gal ${\alpha}13Gal{\beta}14GlcNAc$ sequence with in situ UDP-Gal regeneration. Glycoconj. J. 13, 687-692   DOI
12 Wong, C.-H. and G. M. Whitesides (1994), Enzymes in Synthetic Organic Chemistry 12. 1st edition. New York: Oxford
13 Gabius, H.-J. and S. Gabius (1997), Glycoscience: status and perspectives. Champman and Hall Gmbh. Weinheim, Germany
14 Koeller, K. M. and C. H. Wong (2000), Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 10(11), 1157-1169   DOI   ScienceOn
15 Meynial-Salles, I and D. Combes. (1996), In vitro glycosylation of proteins: An enzymatic approach. J. Biotechnol. 46(1), 1-14   DOI   ScienceOn
16 Yanisch-Perron, C., J. Vieira, and J. Messing. (1985), Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119   DOI   ScienceOn
17 Bettler, E., E. Samain, V. Chazalet, C. Bosso, A. Heyraud, D. H. Joziasse, W. W. Wakarchuk, A. Imberty, and R. A. Geremia. (1999), The living factory:in vivo production of N-acetyllactosamine containing carbohydrates in E. coli. Glycoconjugate J. 16, 205-212   DOI   ScienceOn
18 Endo, T., S. Koizumi, K. Tabata, S. Kakita, and A. Ozaki. (1999), Largescale production of N-acetylactosamine through bacterial coupling. Carbohydrate Res. 316, 179-183   DOI   ScienceOn
19 Dave, S.-W. O., P. M. Nissom, R. Philp, S. K.-W. Oh, and M. G.-S. Yap. (2006), Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 during batch fermentation. Enzyme Microb. Technol. 39, 391-398   DOI   ScienceOn
20 Jana, S. and J. K. Deb, (2005), Strategies for efficient production of heterologous proteins in E. coli. Appl. Microbiol. Biotechnol. 67, 289-298   DOI   ScienceOn