• 제목/요약/키워드: Metabolic Targeting

검색결과 75건 처리시간 0.028초

PET Imaging of Click-engineered PSMA-targeting Immune Cells in Normal Mice

  • Hye Won Kim;Won Chang Lee;In Ho Song;Hyun Soo Park;Sang Eun Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.53-61
    • /
    • 2022
  • This study aimed to increase the targeting ability against PSMA in cell therapy using metabolic glycoengineering and biorthogonal chemistry and to visualize cell trafficking using PET imaging. Cellular membranes of THP-1 cells were decorated with azide(-N3) using Ac4ManNAz by metabolic glycoengineering. Engineered THP-1 cells were conjugated with DBCO-bearing fluorophore (ADIBO-Cy5.5) for 1 h at different concentrations and analyzed by confocal fluorescence microscopy and flow cytometry. For PSAM ligand conjugation to THP-1 cells, Ac4ManNAz treated THP-1 cells were incubated with DBCO-PSMA ligand (ADIBO-GUL) at a final concentration with 100 µM for 1 h. To evaluate the effect on cell recognition, PSMA ligand conjugated THP-1 cells(as effectors) were co-cultured with PSMA positive 22RV1 (as target cells) at 3 : 1 a effector-to-target cell (E/T) ratio. The interaction between THP-1 and 22RV1 was monitored by confocal fluorescence microscopy. For preparing the radiolabeled THP-1, the cells were treated at the activity of ~ 740 kBq of [89Zr]Zr(oxinate)4/5 × 106 cells. Radiolabeled cells were analyzed for determination of cell-associated radioactivity by gamma counting and viability using MTS assay. In the cytotoxicity assay, THP-1 cells did not have any cytotoxicity even when the Ac4ManNAz concentration was 100 µM. In confocal microscopy and flow cytometry, THP-1 cells were efficiently labeled ADIBO-Cy5.5 in a dose-dependent manner, and the dose of 100 µM was the optimal concentration for the following experiments. The clusters of PSMA ligand-conjugated THP-1 cells and 22RV1 cells were identified, indicating cell-cell recognition over the cell surface between two types of cells. Cell radiolabeling efficiency was 54.5 ± 17.8%. THP-1 labeled with 0.09 ± 0.03 Bq/cell showed no significant cytotoxicity compared to unlabeled THP-1 up to 7 days. We successfully demonstrated that Ac4ManNAz treated cells were efficiently conjugated with ADIBO-GUL for preparing the PSMA-targeting cells, and [89Zr]Zr(oxinate)4 could be used to label cells without toxicity. It suggested that PSMA-ligand conjugated cell therapy could be improved cell targeting and be monitored by PET imaging.

한국 성인 여성의 대사증후군과 삶의 질 (The Relationship between Metabolic Syndrome and Quality of Life in Korean Adult Women)

  • 박형수;박종
    • 한국전자통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.639-648
    • /
    • 2013
  • 대사증후군은 심혈관 질환에 큰 위험인자이며, 대사증후군을 가진 사람의 삶의 질은 저하될 수밖에 없을 것으로 판단된다. 따라서 우리나라 19세 이상 성인 여자를 대상으로 위험인자의 수, 각 위험인자별 이상 유무와 삶의 질과의 관계를 파악하고자 한다. 본 연구는 국민건강영양조사 제4기 1차년도와 제4기 2차년도의 자료를 통합하였고, 연구의 대상자 4,365명을 최종 분석 대상자로 하였다. 자료 분석은 Version 17.0 한글판 SPSS 통계 프로그램을 이용하였으며, 통계적 유의성은 p<0.05로 정의하였다. 본 연구의 대사증후군 유병률은 24.2%였다. 대사증후군의 위험 요인수가 1개인 경우의 삶의 질에 대한 회귀계수는 -0.024, 2개인 경우는 -0.048, 3개인 경우는 -0.090, 4개인 경우는 -0.117, 5개인 경우는 -0.168이었다. 위험요인들의 회귀계수는 허리둘레 -0.035. 혈압은 -0.064, 공복혈당은 -0.026, HDL콜레스테롤은 -0.012이었다. 결론적으로 대사증후군과 그 위험요인이 여성의 삶의 질 저하에 영향을 주고 있어서 이에 대한 중재가 요구되며, 향후 대사증후군에 영향을 미치는 다른 요인들과 삶의 질의 인과관계를 명확히 밝히는 연구를 통해 삶의 질 회복을 위한 방안이 필요하다고 사료된다.

파종 방법에 따른 고려인삼의 대사체 비교 (Comparative Analysis of Metabolites in Roots of Panax ginseng Obtained from Different Sowing Methods)

  • 양승옥;이성우;김영옥;이상원;김나현;최형균;정주연;이동호;신유수
    • 한국약용작물학회지
    • /
    • 제22권1호
    • /
    • pp.17-22
    • /
    • 2014
  • Ginsenosides of roots in Panax ginseng were analyzed by metabolic-targeting HPLC using the partial least squares discriminant analysis (PLS-DA) and compared depending on sowing methods between direct seeding and transplanting method. Score plots derived from PLS-DA could identify the sowing method between the direct seeding and transplanting method in P. ginseng roots. The ginsenoside compounds were assigned as Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3, and Rd. Contents of Re, Rf, Rg2, Rb1, Rc, Rb3, and Rd of main roots produced from the transplanting method were relatively higher than those of samples produced from direct seeding method. Also, contents of Rg1, Re, Rf, Rg2, Rb1, Rc, Rb2, Rb3, and Rd of lateral roots from the transplanted samples were relatively higher than those of samples produced from direct seeding method. Therefore, HPLC with PLS-DA analysis can be a straightforward tool for identification of ginsenosides in main or lateral roots of P. ginseng obtained from two different seeding methods between direct and transplanting methods.

Rat Malonyl-CoA Decarboxylase; Cloning, Expression in E. coli and its Biochemical Characterization

  • Lee, Gha-Young;Bahk, Young-Yil;Kim, Yu-Sam
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.213-219
    • /
    • 2002
  • Malonyl-CoA decarboxylase (E.C.4.1.1.9) catalyzes the conversion of malonyl-CoA to acetyl-CoA. Although the metabolic role of this enzyme has not been fully defined, it has been reported that its deficiency is associated with mild mental retardation, seizures, hypotonia, cadiomyopathy, developmental delay, vomiting, hypoglycemia, metabolic acidosis, and malonic aciduria. Here, we isolated a cDNA clone for malonyl CoA decarboxylase from a rat brain cDNA library, expressed it in E. coli, and characterized its biochemical properties. The full-length cDNA contained a single open-reading frame that encoded 491 amino acid residues with a calculated molecular weight of 54, 762 Da. Its deduced amino acid sequence revealed a 65.6% identity to that from the goose uropigial gland. The sequence of the first 38 amino acids represents a putative mitochondrial targeting sequence, and the last 3 amino acid sequences (SKL) represent peroxisomal targeting ones. The expression of malonyl CoA decarboxylase was observed over a wide range of tissues as a single transcript of 2.0 kb in size. The recombinant protein that was expressed in E. coli was used to characterize the biochemical properties, which showed a typical Michaelis-Menten substrate saturation pattern. The $K_m$ and $V_{max}$ were calculated to be $68\;{\mu}M$ and $42.6\;{\mu}mol/min/mg$, respectively.

독거노인을 위한 베하스 프로그램을 활용한 지역사회기반 참여연구 리더 경험에 관한 융합적 연구 (Convergence Study on the Experience of a Community Based Participatory Research leader using the BeHaS Program for Elderly Living Alone)

  • 김종임;김선애;김지영
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.293-303
    • /
    • 2021
  • 본 연구는 지역사회기반 참여연구를 활용한 베하스 프로그램에 연구참여자로 참여했던 독거노인들의 경험의 본질을 확인하고자 시행되었다. 본 연구 참여자는 대사증후군을 가진 독거노인 총 6명으로, 12주간 심혈관 건강을 위한 베하스 프로그램을 지역사회기반 참여연구로 진행할 때 리더로서 역할을 수행하였다. 자료수집은 포커스 그룹 인터뷰 방법으로 하였다. 연구결과 '연구참여자가 되는 부담감', '새로운 프로그램을 알게됨', '베하스 프로그램에 젖어듬', '새로운 리더십을 가지게 됨', '대사증후군 건강관리에 대해 알게됨', '달라진 자신을 통해 보람을 느낌' 등 6개의 범주를 도출하였다. 이러한 결과를 통해 본 연구는 독거노인을 대상으로 한 지역사회참여기반 연구를 통하여 대사증후군 베하스 프로그램 참여경험의 본질을 파악하였으며, 추후 베하스 프로그램 운영 및 지역사회 정착 전략의 기초자료를 제공할 수 있을 것이다.

Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders

  • Han, Yong-Hyun;Lee, Kyeongjin;Saha, Abhirup;Han, Juhyeong;Choi, Haena;Noh, Minsoo;Lee, Yun-Hee;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.455-464
    • /
    • 2021
  • Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.

Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases

  • Kang, Chanhee
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.821-827
    • /
    • 2019
  • Aging is the most important single risk factor for many chronic diseases such as cancer, metabolic syndrome, and neurodegenerative disorders. Targeting aging itself might, therefore, be a better strategy than targeting each chronic disease individually for enhancing human health. Although much should be achieved for completely understanding the biological basis of aging, cellular senescence is now believed to mainly contribute to organismal aging via two independent, yet not mutually exclusive mechanisms: on the one hand, senescence of stem cells leads to exhaustion of stem cells and thus decreases tissue regeneration. On the other hand, senescent cells secrete many proinflammatory cytokines, chemokines, growth factors, and proteases, collectively termed as the senescence-associated secretory phenotype (SASP), which causes chronic inflammation and tissue dysfunction. Much effort has been recently made to therapeutically target detrimental effects of cellular senescence including selectively eliminating senescent cells (senolytics) and modulating a proinflammatory senescent secretome (senostatics). Here, we discuss current progress and limitations in understanding molecular mechanisms of senolytics and senostatics and therapeutic strategies for applying them. Furthermore, we propose how these novel interventions for aging treatment could be improved, based on lessons learned from cancer treatment.

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

  • Mukherjee, Avinaba;Sadhukhan, Gobinda Chandra
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the 'apicoplast', which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle's function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.