Browse > Article
http://dx.doi.org/10.22643/JRMP.2002.8.2.53

PET Imaging of Click-engineered PSMA-targeting Immune Cells in Normal Mice  

Hye Won Kim (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University)
Won Chang Lee (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital)
In Ho Song (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital)
Hyun Soo Park (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital)
Sang Eun Kim (Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.8, no.2, 2022 , pp. 53-61 More about this Journal
Abstract
This study aimed to increase the targeting ability against PSMA in cell therapy using metabolic glycoengineering and biorthogonal chemistry and to visualize cell trafficking using PET imaging. Cellular membranes of THP-1 cells were decorated with azide(-N3) using Ac4ManNAz by metabolic glycoengineering. Engineered THP-1 cells were conjugated with DBCO-bearing fluorophore (ADIBO-Cy5.5) for 1 h at different concentrations and analyzed by confocal fluorescence microscopy and flow cytometry. For PSAM ligand conjugation to THP-1 cells, Ac4ManNAz treated THP-1 cells were incubated with DBCO-PSMA ligand (ADIBO-GUL) at a final concentration with 100 µM for 1 h. To evaluate the effect on cell recognition, PSMA ligand conjugated THP-1 cells(as effectors) were co-cultured with PSMA positive 22RV1 (as target cells) at 3 : 1 a effector-to-target cell (E/T) ratio. The interaction between THP-1 and 22RV1 was monitored by confocal fluorescence microscopy. For preparing the radiolabeled THP-1, the cells were treated at the activity of ~ 740 kBq of [89Zr]Zr(oxinate)4/5 × 106 cells. Radiolabeled cells were analyzed for determination of cell-associated radioactivity by gamma counting and viability using MTS assay. In the cytotoxicity assay, THP-1 cells did not have any cytotoxicity even when the Ac4ManNAz concentration was 100 µM. In confocal microscopy and flow cytometry, THP-1 cells were efficiently labeled ADIBO-Cy5.5 in a dose-dependent manner, and the dose of 100 µM was the optimal concentration for the following experiments. The clusters of PSMA ligand-conjugated THP-1 cells and 22RV1 cells were identified, indicating cell-cell recognition over the cell surface between two types of cells. Cell radiolabeling efficiency was 54.5 ± 17.8%. THP-1 labeled with 0.09 ± 0.03 Bq/cell showed no significant cytotoxicity compared to unlabeled THP-1 up to 7 days. We successfully demonstrated that Ac4ManNAz treated cells were efficiently conjugated with ADIBO-GUL for preparing the PSMA-targeting cells, and [89Zr]Zr(oxinate)4 could be used to label cells without toxicity. It suggested that PSMA-ligand conjugated cell therapy could be improved cell targeting and be monitored by PET imaging.
Keywords
Cell therapy; PSMA; Biorthogonal engineering; Click chemistry; PET;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kozikowski AP, Zhang J, Nan F, Petukhov PA, Grajkowska E, Wroblewski JT, Yamamoto T, Bzdega T, Wroblewska B, Neale JH. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J Med Chem 2004;47(7):1729-38.   DOI
2 Holmberg AR, Marquez M, Lennartsson L, Meurling L, Nilsson S. Synthesis and Binding of a Novel PSMA-specific Conjugate. Anticancer Res2018;38(3):1531-7.
3 Eder M, Schafer M, Bauder-Wust U, Hull WE, Wangler C, Mier W, Haberkorn U, Eisenhut M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 2012;23(4):688-97.   DOI
4 Bansal A, Sharma S, Klasen B, Rosch F, Pandey MK. Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Sci Rep 2022;12(1):15646.
5 Zinzani PL. Traditional treatment approaches in B-cell non-Hodgkin's lymphoma. Leuk Lymphoma 2003;44 Suppl 4:S6-14.   DOI
6 June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018;359(6382):1361-5.   DOI
7 Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365(8):725-33.   DOI
8 Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z, Whitlock BM, Miele MM, Li Z, Cunanan KM, Huse M, Hendrickson RC, Wang X, Riviere I, Sadelain M. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 2019;568(7750):112-6.   DOI
9 Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov 2018;8(10):1219-26.   DOI
10 Glover M, Avraamides S, Maher J. How Can We Engineer CAR T Cells to Overcome Resistance? Biologics 2021;15:175-98.
11 Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019;8(3):41.
12 Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 2018;36(4):346-51.   DOI
13 Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, Zhong J. Neoantigen: A New Breakthrough in Tumor Immunotherapy. Front Immunol 2021;12:672356.
14 Rorth P. Communication by touch: role of cellular extensions in complex animals. Cell 2003;112(5):595-8.   DOI
15 Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW, Mackall CL. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018;24(1):20-8.   DOI
16 Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S, Tscharke DC, Ellis S, Prince HM, Trapani JA, Johnstone RW, Smyth MJ, Teng MW, Ali A, Yu Z, Rosenberg SA, Restifo NP, Neeson P, Darcy PK, Kershaw MH. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clin Cancer Res 2017;23(10):2478-90.   DOI
17 Koo H, Choi M, Kim E, Hahn SK, Weissleder R, Yun SH. Bioorthogonal Click Chemistry-Based Synthetic Cell Glue. Small 2015;11(48):6458-66.   DOI
18 Fischer G, Seibold U, Schirrmacher R, Wangler B, Wangler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 2013;18(6):6469-90.   DOI
19 Laughlin ST, Agard NJ, Baskin JM, Carrico IS, Chang PV, Ganguli AS, Hangauer MJ, Lo A, Prescher JA, Bertozzi CR. Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol 2006;415:230-50.
20 Park J, Andrade B, Seo Y, Kim MJ, Zimmerman SC, Kong H. Engineering the Surface of Therapeutic "Living" Cells. Chem Rev 2018;118(4):1664-90.   DOI
21 Sato N, Wu H, Asiedu KO, Szajek LP, Griffiths GL, Choyke PL. 89Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies. Radiology 2015;275(2):490-500.   DOI
22 Charoenphun P, Meszaros LK, Chuamsaamarkkee K, Sharif-Paghaleh E, Ballinger JR, Ferris TJ, Went MJ, Mullen GE, Blower PJ. [89Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur J Nucl Med Mol Imaging 2015;42(2):278-87.   DOI
23 Sato N, Wu H, Asiedu KO, Szajek LP, Griffiths GL, Choyke PL. 89Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies. Radiology 2015;275(2):490-500.   DOI
24 Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, Gerdts E, Yang X, Priceman SJ, Forman SJ, Colcher D, Brown CE, Shively JE. PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with 89Zr-Oxine. J Nucl Med 2018;59(10):1531-7.   DOI
25 Debnath S, Zhou N, McLaughlin M, Rice S, Pillai AK, Hao G, Sun X. PSMA-Targeting Imaging and Theranostic Agents-Current Status and Future Perspective. Int J Mol Sci 2022;23(3):1158.
26 Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF, Moriarty R. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology1996;48(2):326-34.   DOI
27 Maresca KP, Hillier SM, Femia FJ, Keith D, Barone C, Joyal JL, Zimmerman CN, Kozikowski AP, Barrett JA, Eckelman WC, Babich JW. A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 2009;52(2):347-57.
28 Lutje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SA, Rosenbaum-Krumme S, Bockisch A, Gotthardt M, Rijpkema M, Boerman OC. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Theranostics 2015;5(12):1388-401.   DOI