DOI QR코드

DOI QR Code

Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases

  • Kang, Chanhee (School of Biological Sciences, Seoul National University)
  • Received : 2019.02.24
  • Accepted : 2019.04.23
  • Published : 2019.12.31

Abstract

Aging is the most important single risk factor for many chronic diseases such as cancer, metabolic syndrome, and neurodegenerative disorders. Targeting aging itself might, therefore, be a better strategy than targeting each chronic disease individually for enhancing human health. Although much should be achieved for completely understanding the biological basis of aging, cellular senescence is now believed to mainly contribute to organismal aging via two independent, yet not mutually exclusive mechanisms: on the one hand, senescence of stem cells leads to exhaustion of stem cells and thus decreases tissue regeneration. On the other hand, senescent cells secrete many proinflammatory cytokines, chemokines, growth factors, and proteases, collectively termed as the senescence-associated secretory phenotype (SASP), which causes chronic inflammation and tissue dysfunction. Much effort has been recently made to therapeutically target detrimental effects of cellular senescence including selectively eliminating senescent cells (senolytics) and modulating a proinflammatory senescent secretome (senostatics). Here, we discuss current progress and limitations in understanding molecular mechanisms of senolytics and senostatics and therapeutic strategies for applying them. Furthermore, we propose how these novel interventions for aging treatment could be improved, based on lessons learned from cancer treatment.

Keywords

References

  1. Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D., Kang, T.W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978-990. https://doi.org/10.1038/ncb2784
  2. Acosta, J.C., O'Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006-1018. https://doi.org/10.1016/j.cell.2008.03.038
  3. Al-Lazikani, B., Banerji, U., and Workman, P. (2012). Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679-692. https://doi.org/10.1038/nbt.2284
  4. Baar, M.P., Brandt, R.M.C., Putavet, D.A., Klein, J.D.D., Derks, K.W.J., Bourgeois, B.R.M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147.e16. https://doi.org/10.1016/j.cell.2017.02.031
  5. Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J., Zhong, J., Saltness, R.A., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., et al. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184-189. https://doi.org/10.1038/nature16932
  6. Baker, D.J., Wijshake, T., Tchkonia, T., LeBrasseur, N.K., Childs, B.G., van de Sluis, B., Kirkland, J.L., and van Deursen, J.M. (2011). Clearance of p16Ink4apositive senescent cells delays ageing-associated disorders. Nature 479, 232-236. https://doi.org/10.1038/nature10600
  7. Campisi, J. (2013). Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  8. Campisi, J., Kapahi, P., Lithgow, G.J., Melov, S., Newman, J.C., and Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183-192. https://doi.org/10.1038/s41586-019-1365-2
  9. Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J.E., Premsrirut, P., Luo, W., Chicas, A., Lee, C.S., et al. (2011). Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125-2136. https://doi.org/10.1101/gad.17276711
  10. Childs, B.G., Baker, D.J., Wijshake, T., Conover, C.A., Campisi, J., and van Deursen, J.M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472-477. https://doi.org/10.1126/science.aaf6659
  11. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424-1435. https://doi.org/10.1038/nm.4000
  12. Childs, B.G., Gluscevic, M., Baker, D.J., Laberge, R.M., Marquess, D., Dananberg, J., and van Deursen, J.M. (2017). Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718-735. https://doi.org/10.1038/nrd.2017.116
  13. Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
  14. De Cecco, M., Ito, T., Petrashen, A.P., Elias, A.E., Skvir, N.J., Criscione, S.W., Caligiana, A., Brocculi, G., Adney, E.M., Boeke, J.D., et al. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73-78. https://doi.org/10.1038/s41586-018-0784-9
  15. Demaria, M., O'Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., et al. (2017). Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241
  16. Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., Laberge, R.M., Vijg, J., Van Steeg, H., Dolle, M.E., et al. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722-733. https://doi.org/10.1016/j.devcel.2014.11.012
  17. Doles, J., Storer, M., Cozzuto, L., Roma, G., and Keyes, W.M. (2012). Ageassociated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144-2153. https://doi.org/10.1101/gad.192294.112
  18. Dorr, J.R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Dabritz, J.H., Lisec, J., Lenze, D., Gerhardt, A., Schleicher, K., et al. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421-425. https://doi.org/10.1038/nature12437
  19. Dou, Z., Ghosh, K., Vizioli, M.G., Zhu, J., Sen, P., Wangensteen, K.J., Simithy, J., Lan, Y., Lin, Y., Zhou, Z., et al. (2017). Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402-406. https://doi.org/10.1038/nature24050
  20. Freund, A., Patil, C.K., and Campisi, J. (2011). p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536-1548. https://doi.org/10.1038/emboj.2011.69
  21. Gluck, S., Guey, B., Gulen, M.F., Wolter, K., Kang, T.W., Schmacke, N.A., Bridgeman, A., Rehwinkel, J., Zender, L., and Ablasser, A. (2017). Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061-1070. https://doi.org/10.1038/ncb3586
  22. Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular senescence: defining a path forward. Cell 179, 813-827. https://doi.org/10.1016/j.cell.2019.10.005
  23. He, S. and Sharpless, N.E. (2017). Senescence in health and disease. Cell 169, 1000-1011. https://doi.org/10.1016/j.cell.2017.05.015
  24. Helman, A., Klochendler, A., Azazmeh, N., Gabai, Y., Horwitz, E., Anzi, S., Swisa, A., Condiotti, R., Granit, R.Z., Nevo, Y., et al. (2016). p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412-420. https://doi.org/10.1038/nm.4054
  25. Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652-2660.e4. https://doi.org/10.1016/j.cub.2017.07.033
  26. Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018). Hallmarks of cellular senescence. Trends Cell Biol. 28, 436-453. https://doi.org/10.1016/j.tcb.2018.02.001
  27. Herranz, N., Gallage, S., Mellone, M., Wuestefeld, T., Klotz, S., Hanley, C.J., Raguz, S., Acosta, J.C., Innes, A.J., Banito, A., et al. (2015). mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205-1217. https://doi.org/10.1038/ncb3225
  28. Hoare, M., Ito, Y., Kang, T.W., Weekes, M.P., Matheson, N.J., Patten, D.A., Shetty, S., Parry, A.J., Menon, S., Salama, R., et al. (2016). NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979-992. https://doi.org/10.1038/ncb3397
  29. Janzen, V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., DePinho, R.A., Sharpless, N.E., and Scadden, D.T. (2006). Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421-426. https://doi.org/10.1038/nature05159
  30. Jeon, O.H., Kim, C., Laberge, R.M., Demaria, M., Rathod, S., Vasserot, A.P., Chung, J.W., Kim, D.H., Poon, Y., David, N., et al. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775-781. https://doi.org/10.1038/nm.4324
  31. Kang, C. and Elledge, S.J. (2016). How autophagy both activates and inhibits cellular senescence. Autophagy 12, 898-899. https://doi.org/10.1080/15548627.2015.1121361
  32. Kang, C., Xu, Q., Martin, T.D., Li, M.Z., Demaria, M., Aron, L., Lu, T., Yankner, B.A., Campisi, J., and Elledge, S.J. (2015). The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349, aaa5612. https://doi.org/10.1126/science.aaa5612
  33. Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667. https://doi.org/10.1016/j.cell.2008.06.049
  34. Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev. 24, 2463-2479. https://doi.org/10.1101/gad.1971610
  35. Kuilman, T., Michaloglou, C., Vredeveld, L.C., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J., and Peeper, D.S. (2008). Oncogeneinduced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019-1031. https://doi.org/10.1016/j.cell.2008.03.039
  36. Kwon, Y., Kim, J.W., Jeoung, J.A., Kim, M.S., and Kang, C. (2017). Autophagy is pro-senescence when seen in close-up, but anti-senescence in longshot. Mol. Cells 40, 607-612. https://doi.org/10.14348/molcells.2017.0151
  37. Laberge, R.M., Sun, Y., Orjalo, A.V., Patil, C.K., Freund, A., Zhou, L., Curran, S.C., Davalos, A.R., Wilson-Edell, K.A., Liu, S., et al. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049-1061. https://doi.org/10.1038/ncb3195
  38. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  39. Luo, J., Emanuele, M.J., Li, D., Creighton, C.J., Schlabach, M.R., Westbrook, T.F., Wong, K.K., and Elledge, S.J. (2009a). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835-848. https://doi.org/10.1016/j.cell.2009.05.006
  40. Luo, J., Solimini, N.L., and Elledge, S.J. (2009b). Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837. https://doi.org/10.1016/j.cell.2009.02.024
  41. Mazzucco, A.E., Smogorzewska, A., Kang, C., Luo, J., Schlabach, M.R., Xu, Q., Patel, R., and Elledge, S.J. (2017). Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. Genes Dev. 31, 1933-1938. https://doi.org/10.1101/gad.304857.117
  42. McHugh, D. and Gil, J. (2018). Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77. https://doi.org/10.1083/jcb.201708092
  43. Molkentin, J.D., Lin, Q., Duncan, S.A., and Olson, E.N. (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061-1072. https://doi.org/10.1101/gad.11.8.1061
  44. Mosteiro, L., Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M., Fernandez-Marcos, P.J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445. https://doi.org/10.1126/science.aaf4445
  45. Munoz-Espin, D. and Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482-496. https://doi.org/10.1038/nrm3823
  46. Niedernhofer, L.J. and Robbins, P.D. (2018). Senotherapeutics for healthy ageing. Nat. Rev. Drug Discov. 17, 377. https://doi.org/10.1038/nrd.2018.44
  47. Ogrodnik, M., Miwa, S., Tchkonia, T., Tiniakos, D., Wilson, C.L., Lahat, A., Day, C.P., Burt, A., Palmer, A., Anstee, Q.M., et al. (2017). Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691. https://doi.org/10.1038/ncomms15691
  48. Pietras, E.M., Mirantes-Barbeito, C., Fong, S., Loeffler, D., Kovtonyuk, L.V., Zhang, S., Lakshminarasimhan, R., Chin, C.P., Techner, J.M., Will, B., et al. (2016). Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607-618. https://doi.org/10.1038/ncb3346
  49. Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M.C., Morton, J.P., Sansom, O.J., Zender, L., and Keyes, W.M. (2017). The senescenceassociated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172-183. https://doi.org/10.1101/gad.290635.116
  50. Salama, R., Sadaie, M., Hoare, M., and Narita, M. (2014). Cellular senescence and its effector programs. Genes Dev. 28, 99-114. https://doi.org/10.1101/gad.235184.113
  51. Schafer, M.J., White, T.A., Iijima, K., Haak, A.J., Ligresti, G., Atkinson, E.J., Oberg, A.L., Birch, J., Salmonowicz, H., Zhu, Y., et al. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532. https://doi.org/10.1038/ncomms14532
  52. Sharma, P. and Allison, J.P. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205-214. https://doi.org/10.1016/j.cell.2015.03.030
  53. Tasdemir, N., Banito, A., Roe, J.S., Alonso-Curbelo, D., Camiolo, M., Tschaharganeh, D.F., Huang, C.H., Aksoy, O., Bolden, J.E., Chen, C.C., et al. (2016). BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612-629. https://doi.org/10.1158/2159-8290.CD-16-0217
  54. Thompson, P.J., Shah, A., Ntranos, V., Van Gool, F., Atkinson, M., and Bhushan, A. (2019). Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045-1060.e10. https://doi.org/10.1016/j.cmet.2019.01.021
  55. Tilstra, J.S., Robinson, A.R., Wang, J., Gregg, S.Q., Clauson, C.L., Reay, D.P., Nasto, L.A., St Croix, C.M., Usas, A., Vo, N., et al. (2012). NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Invest. 122, 2601-2612. https://doi.org/10.1172/JCI45785
  56. Valentijn, F.A., Falke, L.L., Nguyen, T.Q., and Goldschmeding, R. (2018). Cellular senescence in the aging and diseased kidney. J. Cell Commun. Signal. 12, 69-82. https://doi.org/10.1007/s12079-017-0434-2
  57. van Deursen, J.M. (2019). Senolytic therapies for healthy longevity. Science 364, 636-637. https://doi.org/10.1126/science.aaw1299
  58. Wiley, C.D., Velarde, M.C., Lecot, P., Liu, S., Sarnoski, E.A., Freund, A., Shirakawa, K., Lim, H.W., Davis, S.S., Ramanathan, A., et al. (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303-314. https://doi.org/10.1016/j.cmet.2015.11.011
  59. Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., Inman, C.L., Ogrodnik, M.B., Hachfeld, C.M., Fraser, D.G., et al. (2018). Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246-1256. https://doi.org/10.1038/s41591-018-0092-9
  60. Yang, H., Wang, H., Ren, J., Chen, Q., and Chen, Z.J. (2017). cGAS is essential for cellular senescence. Proc. Natl. Acad. Sci. U. S. A. 114, E4612-E4620. https://doi.org/10.1073/pnas.1705499114
  61. Zhu, Y., Doornebal, E.J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., Niedernhofer, L.J., Robbins, P.D., Tchkonia, T., and Kirkland, J.L. (2017). New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9, 955-963. https://doi.org/10.18632/aging.101202
  62. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y., Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.O., Giles, C.B., et al. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428-435. https://doi.org/10.1111/acel.12445
  63. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., et al. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658. https://doi.org/10.1111/acel.12344

Cited by

  1. Cellular Senescence as a Therapeutic Target for Age-Related Diseases: A Review vol.37, pp.4, 2019, https://doi.org/10.1007/s12325-020-01287-0
  2. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP vol.12, pp.5, 2019, https://doi.org/10.3390/cancers12051145
  3. Genome-Protecting Compounds as Potential Geroprotectors vol.21, pp.12, 2019, https://doi.org/10.3390/ijms21124484
  4. Targeting Molecular Mechanism of Vascular Smooth Muscle Senescence Induced by Angiotensin II, A Potential Therapy via Senolytics and Senomorphics vol.21, pp.18, 2019, https://doi.org/10.3390/ijms21186579
  5. A natural product solution to aging and aging-associated diseases vol.216, 2019, https://doi.org/10.1016/j.pharmthera.2020.107673
  6. The right time for senescence vol.10, 2019, https://doi.org/10.7554/elife.72449
  7. Programmed Cell Senescence in the Mouse Developing Spinal Cord and Notochord vol.9, 2019, https://doi.org/10.3389/fcell.2021.587096
  8. Bcl-xL as a Modulator of Senescence and Aging vol.22, pp.4, 2019, https://doi.org/10.3390/ijms22041527
  9. A flow-cytometry-based assessment of global protein synthesis in human senescent cells vol.2, pp.3, 2019, https://doi.org/10.1016/j.xpro.2021.100809
  10. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions vol.53, pp.11, 2021, https://doi.org/10.1038/s12276-021-00710-y
  11. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies vol.10, pp.11, 2021, https://doi.org/10.3390/antiox10111799
  12. Chronic Systemic Curcumin Administration Antagonizes Murine Sarcopenia and Presarcopenia vol.22, pp.21, 2019, https://doi.org/10.3390/ijms222111789
  13. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration vol.9, pp.1, 2019, https://doi.org/10.1038/s41413-021-00164-y
  14. Exploring New Kingdoms: The Role of Extracellular Vesicles in Oxi-Inflamm-Aging Related to Cardiorenal Syndrome vol.11, pp.1, 2019, https://doi.org/10.3390/antiox11010078