• Title/Summary/Keyword: Meshfree

Search Result 86, Processing Time 0.02 seconds

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

A Study on the Adaptive Refinement Method for the Stress Analysis of the Meshfree Method (적응적 세분화 방법을 이용한 무요소법의 응력 해석에 관한 연구)

  • Han, Sang-Eul;Kang, Noh-Won;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an adaptive node generation procedure in the radial point interpolation method is proposed. Since we set the initial configuration of nodes by subdivision of background cell, abrupt changes of inter-nodal distance between higher and lower error regions are unavoidable. This unpreferable nodal spacing induces additional errors. To obtain the smoothy nodal configuration, it's regenerated by local Delaunay triangulation algorithm This technique was originally developed to generate a set of well-shaped triangles and tetrahedra. To demonstrate the performance of proposed scheme, the results of making optimal nodal configuration with adaptive refinement method are investigated for stress concentration problems.

  • PDF

1D contaminant transport using element free Galerkin method with irregular nodes

  • Rupali, S.;Sawant, Vishwas A.
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.203-221
    • /
    • 2016
  • The present study deals with the numerical modelling for the one dimensional contaminant transport through saturated homogeneous and stratified porous media using meshfree method. A numerical algorithm based on element free Galerkin method is developed. A one dimensional form of the advectivediffusive transport equation for homogeneous and stratified soil is considered for the analysis using irregular nodes. A Fortran program is developed to obtain numerical solution and the results are validated with the available results in the literature. A detailed parametric study is conducted to examine the effect of certain key parameters. Effect of change of dispersion, velocity, porosity, distribution coefficient and thickness of layer is studied on the concentration of the contaminant.

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Yongsik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1737-1751
    • /
    • 2013
  • An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.

A Meshfree method Based on the Local Partition of Unity for Cohesiv cracks (국부 단위분할 원리에 기초한 무요소법의 점성균열 모델)

  • Zi Goang-Seup;Jung Jin-Kyu;Kim Byeong-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.357-364
    • /
    • 2006
  • The meshfree method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by the branch enrichment function without the stress singularity. It is found that this method is more accurate and converges faster than the meshless methods for LEFM cracks based on the visibility concept Several staic and dynamic examples are solved to verify the method.

  • PDF

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

Improvement Scheme of Nodal Integration in Meshless Method (무요소법에서 절점 적분의 효과적 개선방안)

  • 송태한;임장근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.53-60
    • /
    • 2001
  • Meshfree methods have been attracting issue as computational methods during past a few years. Nowadays, various meshfree methods such as EFGM, RKPM h-p cloud method and etc. were developed and applied in engineering problems. But, most of them were not truly meshless method because background mesh of cell was required for the spatial integration of a weak form. A nodal integration is required for truly meshless methods but it is known that this method gives a little unstable and incorrect solutions. In this paper, an improvement scheme of the existed nodal integration which the weak form can be simply integrated without any stabilization term is proposed. Numerical tests show that the proposed method is more convenient and gives more correct solutions than the previous method.

  • PDF

An Extended Meshfree Method without the Blending Region (혼합영역이 없는 확장무요소법)

  • Zi, Goang-Seup;Rabczuk, Timon;Kim, Ji-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.507-512
    • /
    • 2007
  • A new type of extended element-free Galerkin method (XFEM) is proposed on this paper. The blending region which was inevitable in the extended finite element method and the extended meshfree method is removed in this method. For this end, two different techniques are developed. The first one is the modification of the domain of influence so that the crack tip is always placed on the edge of a domain of influence. The second method is the use of the Lagrange multiplier. The crack is virtually extended beyond the actual crack tip. The virtual extension was forced close by the Lagrange multiplier. The first method can be applied to two dimensional problems only Lagrange multiplier method can be used in both two and three dimensions.

  • PDF

Modelling of concrete structures subjected to shock and blast loading: An overview and some recent studies

  • Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.235-249
    • /
    • 2009
  • The response of concrete structures subjected to shock and blast load involves a rapid transient phase, during which material breach may take place. Such an effect could play a crucial role in determining the residual state of the structure and the possible dispersion of the fragments. Modelling of the transient phase response poses various challenges due to the complexities arising from the dynamic behaviour of the materials and the numerical difficulties associated with the evolving material discontinuity and large deformations. Typical modelling approaches include the traditional finite element method in conjunction with an element removal scheme, various meshfree methods such as the SPH, and the mesoscale model. This paper is intended to provide an overview of several alternative approaches and discuss their respective applicability. Representative concrete material models for high pressure and high rate applications are also commented. Several recent application studies are introduced to illustrate the pros and cons of different modelling options.

A coupled finite element/meshfreemoving boundary method for self-piercing riveting simulation

  • Cai, Wayne;Wang, Hui-Ping;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.257-270
    • /
    • 2013
  • The use of lightweight materials has been steadily increasing in the automotive industry, and presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials (such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint performance, it often requires a long trial-and-error testing of the SPR process. This is because current state of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving boundary algorithm to overcome these numerical difficulties. The simulation results are compared with physical measurements to demonstrate the effectiveness of the present method.