Browse > Article
http://dx.doi.org/10.12989/sem.2009.32.2.235

Modelling of concrete structures subjected to shock and blast loading: An overview and some recent studies  

Lu, Yong (Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh)
Publication Information
Structural Engineering and Mechanics / v.32, no.2, 2009 , pp. 235-249 More about this Journal
Abstract
The response of concrete structures subjected to shock and blast load involves a rapid transient phase, during which material breach may take place. Such an effect could play a crucial role in determining the residual state of the structure and the possible dispersion of the fragments. Modelling of the transient phase response poses various challenges due to the complexities arising from the dynamic behaviour of the materials and the numerical difficulties associated with the evolving material discontinuity and large deformations. Typical modelling approaches include the traditional finite element method in conjunction with an element removal scheme, various meshfree methods such as the SPH, and the mesoscale model. This paper is intended to provide an overview of several alternative approaches and discuss their respective applicability. Representative concrete material models for high pressure and high rate applications are also commented. Several recent application studies are introduced to illustrate the pros and cons of different modelling options.
Keywords
shock and blast; concrete structure; numerical simulation; finite element method; meshfree method; mesoscale model;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 ANSYS Academic Research, v. 11.0
2 Attaway, S.W., Heinstein, M.W. and Swegle, J.W. (1994), 'Coupling of smooth particle hydrodynamics with the finite element method', Nucl. Eng. Des., 150, 199-205   DOI   ScienceOn
3 Autodyn (2001), Theory Manual, revision 4.2, Century Dynamics Inc., San Ramon, California
4 Brackbill, J.U. and Ruppel, H.M. (1986), 'FLIP: A method for adoptively zoned, particle-in-cell calculations in two dimensions', J. Comput. Phys., 65, 314-343   DOI   ScienceOn
5 Cusatis, G., Bažant Z.P. and Cedolin, L. (2006), Confinement-shear lattice CSL model for fracture propagation in concrete, Comput. Meth. Appl. Mech. Eng., 195, 7154-7171   DOI   ScienceOn
6 Cusatis, G. and Pelessone, D. (2006), 'Mesolevel simulation of reinforced concrete structures under impact loadings', Proc. EURO-C 2006 Conf. on Computational Modelling of Concrete Structures, 27-30 March 2006, Mayrhofen, Tyrol, Austria, 63-70
7 Eckardt, S., Hafner, S. and Konke, C. (2004), 'Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale', in: Proc. of ECCOMAS 2004, Jyvaskyla
8 Fahrenthold, E.P. and Koo, J.C. (2000), 'Hybrid particle-element bond graphs for impact dynamics simulation', J. Dyn. Syst., Measurement, Control, 122, 306-313   DOI   ScienceOn
9 Johnson, G.R. (1994), 'Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations', Nucl. Eng. Des., 150, 265-274   DOI   ScienceOn
10 Johnson, G.R., Stryk, R.A. and Beissel, S.R. (1996), 'SPH for high velocity impact computations', Comput. Meth. Appl. Mech. Eng., 139(1-4), 347-373   DOI   ScienceOn
11 Johnson, G.R. and Holmquist, T.J. (1994), 'An improved constitutive model for brittle materials', High-pressure Science and Technology. AIP Press: New York
12 Johnson, G.R. and Stryk, R.A. (2003), 'Conversion of 3D distorted elements into meshless particles during dynamic deformation', Int. J. Impact Eng., 28, 947-966   DOI   ScienceOn
13 Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), 'Mesoscopic study of concrete II: nonlinear finite element analysis', Comput. Struct., 70, 545-556   DOI   ScienceOn
14 Li, S. and Liu, W.K. (2004), Meshfree Particle Methods, Berlin: Springer Verlag
15 LS-DYNA (2007), Keyword User’s Manual, Version 971. Livermore Software Technology Corporation
16 Lu, Y., Tu, Z. and Dong, A. (2007), 'Modeling of concrete for localized impact / explosion effects', Report No. 2 for NTU-DSTA Joint R&D Project on Integrated Explosion Modelling, NTU, Feb. 2007, Singapore
17 Lu, Y. and Tu, Z. (2008), 'Numerical simulation of concrete fragmentation with a meso-scale approach', Proc., ASEM'08, 26-28 May, Jeju, Korea
18 Lu, Y. and Wang, Z.Q. (2006), 'Characterization of structural effects from above-ground explosion using coupled numerical simulation', Comput. Struct., 84(28), 1729-1742   DOI   ScienceOn
19 Luccioni, B.M., Ambrosini, R.D. and Danesi, R.F. (2004), 'Analysis of building collapse under blast loads', Eng. Struct., 26, 63-71   DOI   ScienceOn
20 Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), 'K&C concrete material model Release III - Automated generation of material model input', K&C Technical Report TR-99-24-B1
21 Riedel, W., Thoma, K. and Hiermaier, S. (1999), 'Numerical analysis using a ew macroscopic concrete model for hydrocodes', Proc. 9th Int. Symposium on Interaction of the Effects of Munitions with Structures, 315-322
22 Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), A plasticity concrete material model for Dyna3D', Int. J. Impact Eng., 19(9-10), 847-873   DOI   ScienceOn
23 Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G.,Wang, F., Andrade Pires, F.M. and Yu, J. (2004), 'The modelling of multi-fracturing solids and particulate media', Int. J. Numer. Meth. Eng., 60(1), 317-339   DOI   ScienceOn
24 Rabczuk, T. and Eibl, J. (2006), 'Modelling dynamic failure of concrete with meshfree methods', Int. J. Impact Eng., 32(11), 1878-1897   DOI   ScienceOn
25 Sadouki, H. and Wittmann, F.H. (1998), 'On the analysis of the failure process in composite materials by numerical simulation', Mater. Sci. Eng., A104, 9-20   DOI   ScienceOn
26 Silling, S.A. and Askari, E. (2005), 'A meshfree method based on the peridynamic model of solid mechanics', Comput. Struct., 83, 1526-1535   DOI   ScienceOn
27 Sulsky, D. and Schreyer, H.L. (1996), 'Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems', Comput. Meth. Appl. Mech. Eng., 139, 409-429   DOI   ScienceOn
28 Sulsky, D., Zhou, S.J. and Schreyer, H.L. (1995), 'Application of a particle-in-cell method to solid mechanics', Comput. Phys. Commun., 87, 136-252   DOI   ScienceOn
29 Tu, Z. and Lu, Y. (2009), 'Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations', Int. J. Impact Eng., 36, 132-146   DOI   ScienceOn
30 Unosson, M. and Nilsson, L. (2006), 'Projectile penetration and perforation of high strength concrete: experimental results and macroscopic modelling', Int. J. Impact Eng., 32, 1068-1085   DOI   ScienceOn
31 Wang, Z., Lu, Y., Hao, H. and Chong, K. (2004), 'A full coupled numerical analysis approach for buried structures subjected to subsurface blast', Comput. Struct., 83(4-5), 339-356   DOI   ScienceOn
32 Xu, K. and Lu, Y. (2006), 'Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading', Comput. Struct., 84(5-6), 431-438   DOI   ScienceOn