• 제목/요약/키워드: Meromorphic

검색결과 241건 처리시간 0.025초

Semigroups which are not weierstrass semigroups

  • Kim, Seon-Jeong
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.187-191
    • /
    • 1996
  • Let C be a nonsingular complex projective algebraic curve (or a compact Riemann surface) of genus g. Let $M(C)$ denote the field of meromorphic functions on C and N the set of all non-negative integers.

  • PDF

EISENSTEIN SERIES WITH NON-UNITARY TWISTS

  • Deitmar, Anton;Monheim, Frank
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.507-530
    • /
    • 2018
  • It is shown that for a non-unitary twist of a Fuchsian group, which is unitary at the cusps, Eisenstein series converge in some half-plane. It is shown that invariant integral operators provide a spectral decomposition of the space of cusp forms and that Eisenstein series admit a meromorphic continuation.

Weighted Value Sharing and Uniqueness of Entire Functions

  • Sahoo, Pulak
    • Kyungpook Mathematical Journal
    • /
    • 제51권2호
    • /
    • pp.145-164
    • /
    • 2011
  • In the paper, we study with weighted sharing method the uniqueness of entire functions concerning nonlinear differential polynomials sharing one value and prove two uniqueness theorems, first one of which generalizes some recent results in [10] and [16]. Our second theorem will supplement a result in [17].

SOME RESULTS RELATED TO DIFFERENTIAL-DIFFERENCE COUNTERPART OF THE BRÜCK CONJECTURE

  • Md. Adud;Bikash Chakraborty
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, our focus is on exploring value sharing problems related to a transcendental entire function f and its associated differential-difference polynomials. We aim to establish some results which are related to differential-difference counterpart of the Brück conjecture.

A RESULT ON AN OPEN PROBLEM OF LÜ, LI AND YANG

  • Majumder, Sujoy;Saha, Somnath
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.915-937
    • /
    • 2021
  • In this paper we deal with the open problem posed by Lü, Li and Yang [10]. In fact, we prove the following result: Let f(z) be a transcendental meromorphic function of finite order having finitely many poles, c1, c2, …, cn ∈ ℂ\{0} and k, n ∈ ℕ. Suppose fn(z), f(z+c1)f(z+c2) ⋯ f(z+cn) share 0 CM and fn(z)-Q1(z), (f(z+c1)f(z+c2) ⋯ f(z+cn))(k) - Q2(z) share (0, 1), where Q1(z) and Q2(z) are non-zero polynomials. If n ≥ k+1, then $(f(z+c_1)f(z+c_2)\;{\cdots}\;f(z+c_n))^{(k)}\;{\equiv}\;{\frac{Q_2(z)}{Q_1(z)}}f^n(z)$. Furthermore, if Q1(z) ≡ Q2(z), then $f(z)=c\;e^{\frac{\lambda}{n}z}$, where c, λ ∈ ℂ \ {0} such that eλ(c1+c2+⋯+cn) = 1 and λk = 1. Also we exhibit some examples to show that the conditions of our result are the best possible.

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.