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Abstract. In the paper, we study with weighted sharing method the uniqueness of entire

functions concerning nonlinear differential polynomials sharing one value and prove two

uniqueness theorems, first one of which generalizes some recent results in [10] and [16].

Our second theorem will supplement a result in [17].

1. Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [5], [13] and [14]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic func-
tion h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)}(r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM, provided that f−a and g−a have
the same zeros with the same multiplicities. Similarly, we say that f and g share a
IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition, we say that f and g share ∞ CM, if 1

f and 1
g share 0 CM, and we say

that f and g share ∞ IM, if 1
f and 1

g share 0 IM (see[14]). Throughout this paper,
we need the following definition.

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

for any a ∈ C ∪ {∞}.
Corresponding to one famous question of Hayman [4], Fang and Hua [1], Yang

and Hua [12] obtained the following theorem.
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Theorem A. Let f and g be two nonconstant entire functions, n ≥ 6 be a positive
integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz, g(z) = c2e
−cz,

where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f ≡ tg for a
constant t such that tn+1 = 1.

Considering kth derivative instead of 1st derivative Fang [2] proved the following
theorems.

Theorem B. Let f and g be two nonconstant entire functions, and let n, k be
two positive integers with n > 2k + 4. If [fn](k) and [gn](k) share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1.

Theorem C. Let f and g be two nonconstant entire functions, and let n, k be two
positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM,
then f ≡ g.

Now the following question arises:

Is Theorem B and Theorem C hold for some general differential polynomials
like [fn(fm − a)](k) or [fn(f − 1)m](k) ?

X. Y. Zhang and W. C. Lin [17] answered the above question and proved the
following theorems.

Theorem D. Let f and g be two nonconstant entire functions, and let n, m and
k be three positive integers with n ≥ 2k + m∗ + 4, and λ, µ be constants such that
|λ|+ |µ| 6= 0. If [fn(µfm +λ)](k) and [gn(µgm +λ)](k) share 1 CM, then one of the
following holds:
(i) If λµ 6= 0, then f ≡ g.
(ii) If λµ = 0, then either f ≡ tg, where t is a constant satisfying tn+m

∗
= 1 or

f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying

(−1)kλ2(c1c2)n+m
∗
[(n+m∗)c]2k = 1

or
(−1)kµ2(c1c2)n+m

∗
[(n+m∗)c]2k = 1

and m∗ is defined by m∗ = χµm, where

χµ =

{
0 if µ = 0
1 if µ 6= 0.

Theorem E. Let f and g be two nonconstant entire functions, and let n, m and k
be three positive integers with n > 2k+m+4. If [fn(f −1)m](k) and [gn(g−1)m](k)

share 1 CM, then either f ≡ g or f and g satisfy the algebraic equation R(f, g) = 0,
where R(w1, w2) = wn1 (w1 − 1)m − wn2 (w2 − 1)m.

To state the next results we need the following definition known as weighted
sharing of values introduced by I. Lahiri [7, 8] which measures how close a shared
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value is to be shared IM or to be shared CM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Using the idea of weighted sharing of values, T. Zhang and W. Lu [16] proved
the following theorem for entire functions.

Theorem F. Let f and g be two nonconstant transcendental entire functions, and
let n(≥ 1), k(≥ 1), l(≥ 0) be three integers. Suppose that [fn](k) and [gn](k) share
(1, l), if l ≥ 2 and n > 2k + 4 or if l = 1 and n > 3k + 6 or l = 0 and n > 5k + 7,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants

satisfying (−1)k(c1c2)n(nc)2k = 1 or f ≡ tg for some nth root of unity t such that
tn = 1.

Recently L. Liu [10] proved the following theorem which improve Theorem E.

Theorem G. Let f and g be two nonconstant entire functions, and let n, m and
k be three positive integers such that n > 5k + 4m + 9. If [fn(f − 1)m](k) and
[gn(g − 1)m](k) share 1 IM, then either f ≡ g or f and g satisfy the algebraic
equation R(f, g) = 0, where R(w1, w2) = wn1 (w1 − 1)m − wn2 (w2 − 1)m.

Regarding Theorems F and G, it is natural to ask the following questions.

Question 1. What can be said about the relation between two nonconstant entire
functions f and g, if {fn(f − 1)m}(k) and {gn(g − 1)m}(k) share (1, l) for some
l(≥ 0)?

Question 2. What can be said about the relation between two nonconstant entire
functions f and g, if {fn(fm − a)}(k) and {gn(gm − a)}(k) share (1, l) for some
l(≥ 0)?

In this paper, we prove the following two theorems, first one of which will not
only provide a supplementary result of Theorem E, also improve and generalize
Theorems F and G. Our second theorem will provide a supplementary result of
Theorem D. Moreover, Theorem 1 and Theorem 2 deal with Question 1 and Ques-
tion 2 respectively.
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Theorem 1. Let f and g be two nonconstant entire functions, and let n(≥ 1),
m(≥ 0), k(≥ 1) and l(≥ 0) be four integers. Let [fn(f −1)m](k) and [gn(g−1)m](k)

share (1, l). Then
(i) if m = 0, then conclusion of Theorem F holds provided one of l ≥ 2, n > 2k+ 4
or l = 1, n > 3k + 5 or l = 0, n > 5k + 7 holds;
(ii) if m ≥ 1, then conclusion of Theorem G holds provided one of l ≥ 2,
n > 2k + m + 6 or l = 1, n > 3k + 2m + 7 or l = 0, n > 5k + 4m + 9 holds.

Theorem 2. Let f and g be two nonconstant entire functions, and let n, m, k and
l(≥ 0) be four positive integers. Let [fn(µfm + λ)](k) and [gn(µgm + λ)](k) share
(1, l) where λ, µ are constants such that |λ|+ |µ| 6= 0. Then conclusions (i) and (ii)
of Theorem D hold respectively for
(i) l ≥ 2, n > 2k + 3m + 4 or l = 1, n > 3k + 4m + 5 or l = 0, n > 5k + 6m + 7;
and
(ii) l ≥ 2, n > 2k−m∗ + 4 or l = 1, n > 3k−m∗ + 5 or l = 0, n > 5k−m∗ + 7.

Remark 1. Since Theorems F and G can be obtained as special cases of Theorem
1, Theorem 1 improves Theorems F and G.

Though the standard definitions and notations of the value distribution theory
are available in [5], we explain some definitions and notations which are used in the
paper.

Definition 2([6]). For a ∈ C∪{∞} we denote by N(r, a; f |= 1) the counting func-
tions of simple a-points of f . For a positive integer p we denote by N(r, a; f |≤ p)
(N(r, a; f |≥ p)) the counting function of those a-points of f whose multiplicities are
not greater (less) than p, where each a-point is counted according to its multiplicity.

N(r, a; f |≤ p) and N(r, a; f |≥ p) are defined similarly, where in counting the
a-points of f we ignore the multiplicities. Also N(r, a; f |< p) and N(r, a; f |> p)
are defined analogously.

Definition 3([9]). Let p be a positive integer or infinity. We denote by Np(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ p).

Definition 4. Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. We denote by N11(r, 1; f) the counting function for
common simple 1-points of f and g where multiplicity is not counted.

Definition 5. Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. We denote by N22(r, 1; f) the counting function of
those same multiplicity 1-points of f and g where the multiplicity is ≥ 2.

Definition 6. Let f and g be two nonconstant meromorphic functions such that f
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and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p, a 1-point
of g with multiplicity q. We denote by NL(r, 1; f) the counting function of those
1-points of f and g where p > q, with multiplicity being not counted. NL(r, 1; g) is
defined analogously.

Definition 7. For a ∈ C ∪ {∞} we put

δk(a, f) = 1− lim sup
r→∞

Nk(r, a; f)

T (r, f)
.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1([11]). Let f be a nonconstant meromorphic function and let an(z)( 6≡ 0),
an−1(z), ... , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for
i = 0, 1, 2, ..., n. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2([5, 13]). Let f be a transcendental entire function, and let k be a positive
integer. Then for any non-zero finite complex number c

T (r, f) ≤ N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ Nk+1(r, 0; f) +N
(
r, c; f (k)

)
−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
denotes the counting function which only counts those points

such that f (k+1) = 0 but f
(
f (k) − c

)
6= 0.

Lemma 3([15]). Let f be a nonconstant meromorphic function and p, k be positive
integers, then

Np

(
r, 0; f (k)

)
≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 4([5, 13]). Let f be a transcendental meromorphic function, and let a1(z),
a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f), i=1, 2.
Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 5([15]). Let f and g be two nonconstant entire functions, and let k(≥ 1),
l(≥ 0) be integers. Suppose that f (k) and g(k) share (1, l) and one of
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(i) l ≥ 2 and ∆1 = Θ(0, f) + Θ(0, g) + δk+1(0, f) + δk+1(0, g) > 3;
(ii) l = 1 and ∆2 = Θ(0, f) + Θ(0, g) + 2δk+1(0, f) + δk+1(0, g) > 4;
(iii) l = 0 and ∆3 = Θ(0, f) + Θ(0, g) + 3δk+1(0, f) + 2δk+1(0, g) > 6,
holds, then either f (k)g(k) ≡ 1 or f (k) = c1g

(k) +1−c1, where c1(6= 0) is a constant.

Proof. Let

H(z) =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1
.(2.1)

where F ≡ f (k) and G ≡ g(k). It is obvious from (2.1) that if z0 is a common simple
1-point of F and G, then it is a zero of H. Thus

N11(r, 1;F ) = N11(r, 1;G) ≤ N(r, 0;H) ≤ T (r,H) +O(1)(2.2)

≤ N(r,∞;H) + S(r, f) + S(r, g).

By the assumptions H(z) have poles only at zeros of F ′ and G′ and 1-points of F
whose multiplicities are not equal to the multiplicities of the corresponding 1-points
of G. So

N(r,∞;H) ≤ N(r, 0; f) +N(r, 0; g) +NL(r, 1;F ) +NL(r, 1;G)(2.3)

+N0(r, 0;F ′) +N0(r, 0;G′),

where N0(r, 0;F ′) and N0(r, 0;G′) has the same meaning as in Lemma 2. By Lemma
2, we have

T (r, f) ≤ Nk+1(r, 0; f) +N(r, 1;F )−N0(r, 0;F ′) + S(r, f),(2.4)

and

T (r, g) ≤ Nk+1(r, 0; g) +N(r, 1;G)−N0(r, 0;G′) + S(r, g).(2.5)

Since F and G share 1 IM, we have

N(r, 1;F ) +N(r, 1;G)

= 2N11(r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G) + 2N (22(r, 1;F ).

(2.6)

By (2.2) and (2.3), we have

N(r, 1;F ) +N(r, 1;G)

≤ N11(r, 1;F ) + 3NL(r, 1;F ) + 3NL(r, 1;G) + 2N (22(r, 1;F )

+N(r, 0; f) +N(r, 0; g) +N0(r, 0;F ′) +N0(r, 0;G′)

+ S(r, f) + S(r, g).

(2.7)

We consider following three cases:
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Case 1. Let l ≥ 2. Since g is an entire function, we have

N11(r, 1;F ) + 2N (22(r, 1;F ) + 3NL(r, 1;F ) + 3NL(r, 1;G)

≤ N(r, 1;G) + S(r, f) + S(r, g)

≤ T (r,G) + S(r, f) + S(r, g)

≤ T (r, g) + S(r, f) + S(r, g).

(2.8)

From (2.4), (2.5), (2.7) and (2.8), we obtain

T (r, f) ≤ N(r, 0; f) +N(r, 0; g) +Nk+1(r, 0; f) +Nk+1(r, 0; g)

+S(r, f) + S(r, g).

We suppose that there exists a set I of infinite measure such that T (r, g) ≤ T (r, f)
for r ∈ I. Then for r ∈ I,

T (r, f) ≤ {[4−Θ(0, f)−Θ(0, g)− δk+1(0, f)

−δk+1(0, g)] + ε}T (r, f) + S(r, f),

0 < ε < ∆1 − 3. From this we get

T (r, f) ≤ S(r, f)

for r ∈ I, which is a contradiction.
Case 2. Let l = 1. Then

N11(r, 1;F ) + 2N (22(r, 1;F ) + 2NL(r, 1;F ) + 3NL(r, 1;G)

≤ N(r, 1;G) + S(r, f) + S(r, g)

≤ T (r,G) + S(r, f) + S(r, g)

≤ T (r, g) + S(r, f) + S(r, g).

(2.9)

By Lemma 3 and that f is an entire function, we have

NL(r, 1;F ) ≤ N(r, 1;F )−N(r, 1;F )(2.10)

≤ N

(
r,∞;

F

F ′

)
≤ N

(
r,∞;

F ′

F

)
+ S(r, f)

≤ N(r, 0;F ) + S(r, f)

≤ Nk+1(r, 0; f).

From (2.4), (2.5), (2.7), (2.9) and (2.10), we obtain

T (r, f) ≤ N(r, 0; f) +N(r, 0; g) + 2Nk+1(r, 0; f) +Nk+1(r, 0; g)

+S(r, f) + S(r, g).
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We suppose that there exists a set I of infinite measure such that T (r, g) ≤ T (r, f),
r ∈ I. Then for r ∈ I,

T (r, f) ≤ {[5−Θ(0, f)−Θ(0, g)− 2δk+1(0, f)

−δk+1(0, g)] + ε}T (r, f) + S(r, f),

0 < ε < ∆2 − 4. From this we get

T (r, f) ≤ S(r, f)

for r ∈ I, which is a contradiction.
Case 3. Let l = 0. Then

N11(r, 1;F ) + 2N (22(r, 1;F ) +NL(r, 1;F ) + 2NL(r, 1;G)(2.11)

≤ N(r, 1;G) + S(r, f) + S(r, g)

≤ T (r,G) + S(r, f) + S(r, g)

≤ T (r, g) + S(r, f) + S(r, g).

From (2.4), (2.5), (2.7), (2.10) and (2.11), we obtain

T (r, f) ≤ N(r, 0; f) +N(r, 0; g) + 3Nk+1(r, 0; f) + 2Nk+1(r, 0; g)

+S(r, f) + S(r, g).

We suppose that there exists a set I of infinite measure such that T (r, g) ≤ T (r, f),
r ∈ I. Then for r ∈ I,

T (r, f) ≤ {[7−Θ(0, f)−Θ(0, g)− 3δk+1(0, f)

−2δk+1(0, g)] + ε}T (r, f) + S(r, f),

0 < ε < ∆3 − 6. From this we get

T (r, f) ≤ S(r, f)

for r ∈ I, which is a contradiction.
Hence in all the cases H(z) ≡ 0, that is

F ′′

F ′
− 2F ′

F − 1
≡ G′′

G′
− 2G′

G− 1
.

By integrating two sides of the above equality twice we get

1

F − 1
≡ BG+A−B

G− 1
,(2.12)

where A(6= 0) and B are constants.
We consider the case when l ≥ 2. The case l = 1 and l = 0 are similar. Now we
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consider the following three subcases.

Subcase I. Let B 6= 0 and A = B.
If B = −1, we obtain by (2.12) FG ≡ 1.
If B 6= −1, from (2.12) we get

1

F
≡ BG

(1 +B)G− 1
.

So by Lemma 3 we have

N

(
r,

1

1 +B
;G

)
≤ N(r, 0;F ) ≤ Nk+1(r, 0; f) + S(r, f).

By Lemma 2 we obtain

T (r, g) ≤ Nk+1(r, 0; g) +N

(
r,

1

1 +B
;G

)
−N0(r, 0;G′) + S(r, g)

≤ Nk+1(r, 0; g) +Nk+1(r, 0; f) + S(r, f) + S(r, g)

≤ N(r, 0; f) +N(r, 0; g) +Nk+1(r, 0; f) +Nk+1(r, 0; g)

+S(r, f) + S(r, g)

≤ (4−∆1)T (r, g) + S(r, g).

Thus we obtain

(∆1 − 3)T (r, g) ≤ S(r, g),

r ∈ I, which is a contradiction.
Subcase II. Let B 6= 0 and A 6= B.

If B = −1, from (2.12) we obtain

F ≡ A

−[G− (a+ 1)]
.

If B 6= −1, then we get from (2.12) that

F −
(

1 +
1

B

)
≡ −A
B2
(
G+ A−B

B

) .
Since f is an entire function, by Lemma 2, Lemma 3 and by using the same argument
as in subcase I, we get a contradiction in both cases.

Subcase III. Let B = 0 and A 6= 0. Then we obtain from (2.12) that

(2.13) f (k) =
1

A
g(k) + 1− 1

A
.
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This proves the lemma. 2

Lemma 6([3]). Let f(z) be a nonconstant entire function, and let k ≥ 2 be a
positive integer. If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are constants.

3. Proofs of the Theorems

Proof of Theorem 1. We consider F (z) = fn(f − 1)m and G(z) = gn(g− 1)m. Then
by using Lemma 1, we get

Θ(0, F ) = 1− lim sup
r−→∞

N(r, 0;F )

T (r, F )
(3.1)

= 1− lim sup
r−→∞

N(r, 0; fn(f − 1)m)

(n+m)T (r, f)

≥ 1− lim sup
r−→∞

(1 +m∗∗)T (r, f)

(n+m)T (r, f)

≥ n+m− 1−m∗∗

n+m
,

where

m∗∗ =

{
0 if m = 0
1 if m ≥ 1.

Similarly

Θ(0, G) ≥ n+m− 1−m∗∗

n+m
.(3.2)

δk+1(0, F ) = 1− lim sup
r−→∞

Nk+1(r, 0;F )

T (r, F )
(3.3)

= 1− lim sup
r−→∞

Nk+1(r, 0; fn(f − 1)m)

(n+m)T (r, f)

≥ 1− lim sup
r−→∞

(k +m+ 1)T (r, f)

(n+m)T (r, f)

≥ n− k − 1

n+m
.

Similarly

δk+1(0, G) ≥ n− k − 1

n+m
.(3.4)

Since F (k) and G(k) share (1, l), we discuss the following three cases:
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Case 1. l ≥ 2. From (3.1)-(3.4), we obtain ∆1 > 3 provided n > 2k+m+2m∗∗+4.
Since

2k +m+ 2m∗∗ + 4 =

{
2k + 4 if m = 0
2k +m+ 6 if m ≥ 1,

by Lemma 5(i) we have either F (k)G(k) ≡ 1 or

F (k) =
1

A
G(k) + 1− 1

A
.(3.5)

Case 2. l = 1. From (3.1)-(3.4), it is obvious that ∆2 > 4 provided n > 3k+ 2m+
2m∗∗ + 5. Since

3k + 2m+ 2m∗∗ + 5 =

{
3k + 5 if m = 0
3k + 2m+ 7 if m ≥ 1,

by Lemma 5(ii) we have either F (k)G(k) ≡ 1 or (3.5).

Case 3. l = 0. Similarly as above, ∆3 > 6 provided n > 5k+ 4m+ 2m∗∗+ 7. Since

5k + 4m+ 2m∗∗ + 7 =

{
5k + 7 if m = 0
5k + 4m+ 9 if m ≥ 1,

by Lemma 5(iii) we have either F (k)G(k) ≡ 1 or (3.5).

Let
F (k)G(k) ≡ 1.

i.e.,

(3.6) [fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1.

Then we consider following two subcases.
Subcase(I) Let m = 0. Then

(3.7) [fn](k)[gn](k) ≡ 1.

By the nature of f and g it is clear from above that f 6= 0, g 6= 0. And so
[fn](k) 6= 0 and [gn](k) 6= 0. If k ≥ 2, then by Lemma 6 we obtain that f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1.

Suppose that k = 1. Let f(z) = eα(z), g(z) = eβ(z) where α(z) and β(z) are two
entire functions. So from (3.7) we have

(3.8) n2α′β′en(α+β) ≡ 1.
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Thus α′ and β′ have no zeros and we may take α′ = eγ(z) and β′ = eδ(z), where γ
and δ are two entire functions. So from (3.8) we get

n2en(α+β)+γ+δ ≡ 1.

Differentiating we get

(3.9) neγ + γ′ ≡ −(neδ + δ′).

Since γ and δ are entire, we have T (r, γ′) = S(r, eγ) and T (r, δ′) = S(r, eδ). From
this we have

T (r, eγ) = T (r, eδ) + S(r, eγ) + S(r, eδ).

This implies that S(r, eγ) = S(r, eδ) = S(r), say.
Let ρ = −(γ′ + δ′). Then T (r, ρ) = S(r). If ρ 6≡ 0, (3.9) can be written as

eγ

ρ
+
eδ

ρ
≡ 1

n
.

From this and second fundamental theorem of Nevanlinna, we get

T (r, eγ) ≤ T

(
r,
eδ

ρ

)
+ S(r)

≤ N

(
r,∞;

eδ

ρ

)
+N

(
r, 0;

eδ

ρ

)
+N

(
r,

1

n
;
eδ

ρ

)
+ S(r)

≤ S(r),

a contradiction. So by (3.9) we have

α′ + β′ = eγ + eδ = −
(
γ′

n
+
δ′

n

)
≡ 0

i.e., γ = δ+(2s+1)πi for some integer s. Again γ′+δ′ ≡ 0 implies γ+δ = d, where
d is a constant. Taking γ = d1 we get δ = d− d1 = d2, where d1, d2 are constants.
Again α′ + β′ ≡ 0 implies α = cz + logc1 and β = −cz + logc2. Since f = eα and
g = eβ , by (3.8) we obtain that f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are

three constants satisfying

(−1)k(c1c2)n(nc)2k = 1.

Subcase(II) Let m ≥ 1. Since f and g are entire functions, we have f 6= 0 and
g 6= 0. Let f(z) = eα(z), where α(z) is a nonconstant entire function. Clearly

(3.10) [fn+m(z)](k) = sm(α′, α′′, ..., α(k))e(n+m)α(z).

.



Weighted Value Sharing and Uniqueness of Entire Functions 157

(3.11) (−1)m−i[mCif
n+i(z)](k) = si(α

′, α′′, ..., α(k))e(n+i)α(z).

.

(3.12) (−1)m[fn(z)](k) = s0(α′, α′′, ..., α(k))enα(z).

where si(α
′, α′′, ..., α(k)) (i = 0, 1, 2, ...,m) are differential polynomials. Obviously

si(α
′, α′′, ..., α(k)) 6≡ 0

for i = 0, 1, 2, ...,m, and
[fn(f − 1)m](k) 6= 0.

From (3.10) and (3.12) we have

sm(α′, α′′, ..., α(k))emα(z) + ...+ s0(α′, α′′, ..., α(k)) 6= 0.(3.13)

Since α(z) is an entire function, we obtain T (r, α′) = S(r, f) and T (r, α(j)) = S(r, f)
for j = 1, 2, ..., k. Hence T (r, si) = S(r, f) for i = 0, 1, 2, ...,m. So from (3.13),
Lemmas 1 and 4 we obtain

mT (r, f) = T (r, sme
mα + ...s1e

α) + S(r, f)

≤ N(r, 0; sme
mα + ...+ s1e

α) +N(r, 0; sme
mα + ...+ s1e

α + s0) + S(r, f)

≤ N(r, 0; sme
(m−1)α + ...+ s1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction.

We now suppose that (3.5) holds. Then

F =
1

A
G+ P (z),(3.14)

where P (z) is a polynomial of degree atmost k. By the assumptions, we know
that either both f and g are transcendental entire function or both f and g are
polynomials. First we consider the case when f and g are transcendental entire
functions. Then it follows from (3.14) and Lemma 1 that

T (r, f) = T (r, g) + S(r, f).(3.15)

If P (z) 6≡ 0, then by (3.14) and (3.15) and Lemma 4 we obtain

(n+m)T (r, f) = T (r, F ) +O(1)

≤ N(r, 0;F ) +N(r, 0;G) + S(r, f)

≤ 4T (r, f) + S(r, f),

which is a contradiction because n > 5k+4m+9. Hence P (z) ≡ 0, and so F = G/A.
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Now we consider the case when f and g are polynomials. We suppose that f and g
have γ and δ pairwise distinct zeros respectively. Then f and g are of the form

f(z) = c(z − a1)l1(z − a2)l2 ...(z − aγ)lγ ,

g(z) = d(z − b1)m1(z − b2)m2 ...(z − bδ)mδ ,

so that

fn(z) = cn(z − a1)nl1(z − a2)nl2 ...(z − aγ)nlγ ,(3.16)

gn(z) = dn(z − b1)nm1(z − b2)nm2 ...(z − bδ)nmδ ,(3.17)

where c and d are nonzero constants, nli > 5k + 4m + 9, nmj > 5k + 4m + 9,
i = 1, 2, ..., γ, and j = 1, 2, ..., δ. Differentiating (3.5) we obtain

[fn(f − 1)m]
(k+1)

=
1

A
[gn(g − 1)m]

(k+1)
,

i.e.,

(
fn+m

)(k+1)
+ ...+(−1)i mCm−i

(
fn+m−i

)(k+1)
+ ...+(−1)m(fn)

(k+1)

=
1

A

[(
gn+m

)(k+1)
+ ...+(−1)i mCm−i

(
gn+m−i

)(k+1)
+ ...+ (−1)m (gn)

(k+1)
]
.

(3.18)

Using (3.16) and (3.17), (3.18) can be written as

(z − a1)nl1−(k+1)(z − a2)nl2−(k+1)...(z − aγ)nlγ−(k+1)p(z)

= (z − b1)nm1−(k+1)(z − b2)nm2−(k+1)...(z − bδ)nmδ−(k+1)q(z),

(3.19)

where p(z) and q(z) are polynomials such that deg p = m

γ∑
i=1

li + (γ − 1)(k + 1)

and deg q = m
δ∑
j=1

mj + (δ − 1)(k + 1), respectively. Now

γ∑
i=1

[nli − (k + 1)]−m
γ∑
i=1

li =

γ∑
i=1

[(n−m)li − (k + 1)]

> γ(4k + 3m+ 8)

> (γ − 1)(k + 1),

i.e.,

γ∑
i=1

[nli − (k + 1)] > m

γ∑
i=1

li + (γ − 1)(k + 1).
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Similarly,

δ∑
j=1

[nmj − (k + 1)] > m

δ∑
j=1

mj + (δ − 1)(k + 1).

Thus from (3.18) we deduce that there is α such that

fn(α) (f(α)− 1)
m

= gn(α) (g(α)− 1)
m

= 0,

where α has multiplicity greater than 5k+4m+9. This together with (3.14) implies
P (z) = 0. Thus from (3.5) and (3.14) we obtain A = 1 and so

fn(f − 1)m ≡ gn(g − 1)m.(3.20)

If m = 0, then by (3.20) we have f ≡ tg for a constant t such that tn = 1.

If m ≥ 1, then from (3.20) we get

fn[fm + ...+ (−1)i mCm−i f
m−i + ...+ (−1)m](3.21)

= gn[gm + ...+ (−1)imCm−i g
m−i + ...+ (−1)m].

Let h = f
g . If h is a constant, by putting f = gh in (3.21) we get

gn+m(hn+m−1)+...+(−1)i mCm−i g
n+m−i(hn+m−i−1)+...+(−1)mgn(hn−1) = 0,

which implies h = 1. Thus f ≡ g.

If h is not a constant, then from (3.20) we can say that f and g satisfy the
algebraic equation R(f, g) = 0, where R(x, y) = xn(x − 1)m − yn(y − 1)m. This
completes the proof of Theorem 1. 2

Proof of Theorem 2. We consider F (z) = fn(µfm + λ) and G(z) = gn(µgm + λ).
Then [F (z)](k) and [G(z)](k) share (1, l). We consider following three cases.

Case 1. Let λµ 6= 0. By using Lemma 1 we have

Θ(0, F ) = 1− lim sup
r→∞

N(r, 0;F )

T (r, F )
(3.22)

= 1− lim sup
r→∞

N(r, 0; fn(µfm + λ))

(n+m)T (r, f)

≥ 1− lim sup
r→∞

(m+ 1)T (r, f)

(n+m)T (r, f)

≥ n− 1

n+m
.

Similarly

Θ(0, G) ≥ n− 1

n+m
.(3.23)
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δk+1(0, F ) = 1− lim sup
r→∞

Nk+1(r, 0;F )

T (r, F )
(3.24)

= 1− lim sup
r→∞

Nk+1(r, 0; fn(µfm + λ))

(n+m)T (r, f)

≥ 1− lim sup
r→∞

(k +m+ 1)T (r, f)

(n+m)T (r, f)

≥ n− k − 1

n+m
.

Similarly

δk+1(0, G) ≥ n− k − 1

n+m
.(3.25)

Using (3.22)-(3.25) we obtain that if l ≥ 2, then ∆1 > 3 provided n > 2k+ 3m+ 4;
if l = 1, then ∆2 > 4 provided n > 3k + 4m+ 5 and if l = 0, then ∆3 > 6 provided
n > 5k + 6m+ 7. So by Lemma 5 we obtain either F (k)G(k) ≡ 1 or (3.5). Let

F (k)G(k) ≡ 1.

i. e.,

(3.26) [fn(µfm + λ)](k)[gn(µgm + λ)](k) ≡ 1.

Since f and g are entire functions from above it is clear that

f 6= 0 and g 6= 0.(3.27)

Let f(z) = eα(z), where α(z) is an entire function. Then we obtain

(3.28) [µfn+m](k) = t1(α′, α′′, ..., α(k))e(n+m)α(z)

and

(3.29) [λfn](k) = t2(α′, α′′, ..., α(k))enα(z),

where ti(α
′, α′′, ..., α(k)) 6≡ 0 (i = 1, 2) are differential polynomials. Since g is an

entire function, we have from (3.26) that [fn(µfm + λ)](k) 6= 0. So from (3.28) and
(3.29) we get

t1(α′, α′′, ..., α(k))emα(z) + t2(α′, α′′, ..., α(k)) 6= 0.(3.30)

Since α is an entire function, we have T (r, α′) = S(r, f) and

T (r, α(j)) ≤ T (r, α′) + S(r, f) = S(r, f)

for j = 1, 2, ..., k. Hence we have

(3.31) T (r, ti) = S(r, f)
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for i = 1, 2. So by (3.30), (3.31), Lemmas 1 and 4 we get

mT (r, f) ≤ T (r, t1e
mα) + S(r, f)

≤ N(r, 0; t1e
mα) +N(r, 0; t1e

mα + t2) + S(r, f)

≤ T

(
r,

1

t1

)
+ S(r, f)

= S(r, f),

which is a contradiction.
We now suppose that (3.5) holds. Then we obtain (3.14). Suppose that f and g are
transcendental entire functions. Then from (3.14) and Lemma 1 we obtain (3.15).
If P (z) 6≡ 0, then by (3.14) and (3.15) and Lemma 4 we obtain

(n+m)T (r, f) = T (r, F ) +O(1)

≤ N(r, 0;F ) +N(r, 0;G) + S(r, f)

≤ 2(m+ 1)T (r, f) + S(r, f),

which is a contradiction because n > 5k+6m+7. Hence P (z) ≡ 0, and so F = G/A.
Next we suppose that f and g are polynomials. Then proceeding similarly as

in the proof of Theorem 1 we obtain P (z) = 0, and so F = G/A. From (3.5) and
(3.14) we obtain A = 1 and so

fn(µfm + λ) ≡ gn(µgm + λ).(3.32)

Let h = f
g . If h 6≡ 1, from (3.32) we obtain

gm = −λ
µ

1− hn

1− hn+m
.

Since g is an entire function, every zero of hn+m−1 is a zero of hn−1 and hence of
hm − 1. Thus h is a constant, which is a contradiction as f and g are nonconstant.
Therefore h ≡ 1, that is f ≡ g.

Case 2. Let λ = 0 and µ 6= 0. In this case F = µfn+m and G = µgn+m.
Proceeding in the same way as Case 1 of the theorem, we obtain

Θ(0, F ) ≥ n+m− 1

n+m
.(3.33)

Θ(0, G) ≥ n+m− 1

n+m
.(3.34)

δk+1(0, F ) ≥ n+m− k − 1

n+m
.(3.35)
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δk+1(0, G) ≥ n+m− k − 1

n+m
.(3.36)

Using (3.33)-(3.36) we obtain that if l ≥ 2, then ∆1 > 3 provided n > 2k −m+ 4;
if l = 1, then ∆2 > 4 provided n > 3k −m+ 5 and if l = 0, then ∆3 > 6 provided
n > 5k −m+ 7. So by Lemma 5 we obtain either F (k)G(k) ≡ 1 or (3.5).

Let
F (k)G(k) ≡ 1.

i.e.,

(3.37) [µfn+m](k)[µgn+m](k) ≡ 1.

By this and proceeding in the same way as Subcase (I) of Theorem 1 we get f(z) =
c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)kµ2(c1c2)n+m[(n+m)c]2k = 1.

We now suppose that (3.5) holds. Then we obtain (3.14). Suppose that f and g
are transcendental entire functions. Then from (3.14) and Lemma 1 we get (3.15).
If P (z) 6≡ 0, then by (3.14) and (3.15) and Lemma 4 we obtain

(n+m)T (r, f) = T (r, F ) +O(1)

≤ N(r, 0;F ) +N(r, 0;G) + S(r, f)

≤ 2T (r, f) + S(r, f),

which is a contradiction because n > 5k−m+7. Hence P (z) ≡ 0, and so F = G/A.
Next we suppose that f and g are polynomials such that f and g have γ and δ

pairwise distinct zeros respectively. Then we obtain (3.16) and (3.17) where c and
d are nonzero constants, nli > 5k −m + 7, nmj > 5k −m + 7, i = 1, 2, ..., γ, and
j = 1, 2, ..., δ. Differentiating (3.5) we obtain

µ(fn+m)(k+1) =
1

A
[µ(gn+m)(k+1)].(3.38)

Using (3.16) and (3.17), (3.38) can be written as

(z− a1)(n+m)l1−(k+1)(z− a2)(n+m)l2−(k+1)...(z− aγ)(n+m)lγ−(k+1)p(z)

=(z− b1)(n+m)m1−(k+1)(z− b2)(n+m)m2−(k+1)...(z− bδ)(n+m)mδ−(k+1)q(z),

(3.39)

where p(z) and q(z) are polynomials such that deg p = (γ − 1)(k + 1)
and deg q = (δ − 1)(k + 1), respectively. Now

γ∑
i=1

[(n+m)li − (k + 1)] > γ(4k + 6) > (γ − 1)(k + 1).
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Similarly,

δ∑
j=1

[(n+m)j − (k + 1)] > (δ − 1)(k + 1).

Thus from (3.39) we deduce that there is α such that

fn+m(α) = gn+m(α) = 0,

where α has multiplicity greater than 5k −m + 7. This together with (3.14) im-
plies P (z) = 0, and so F = G/A. From (3.5) and (3.14) we obtain A = 1 and so
fn+m ≡ gn+m. Hence f ≡ tg, where t is a constant satisfying tn+m = 1.
Case 3. Let λ 6= 0 and µ = 0. Then F = λfn and G = λgn. This case can be
proved by using same argument as Case 2. This completes the proof of Theorem
2. 2
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