In this paper, we propose a new load forecasting method for smart air conditioning (A/C) based on the modified thermodynamics of indoor temperature and the unbiased finite memory estimator (UFME). Based on modified first-order thermodynamics, the dynamic behavior of indoor temperature can be described by the time-domain state-space model, and an accurate estimate of indoor temperature can be achieved by the proposed UFME. In addition, a reliable A/C load forecast can be obtained using the proposed method. Our study involves the experimental validation of the proposed A/C load forecasting method and communication construction between DR server and HEMS in a test bed. Through experimental data sets, the effectiveness of the proposed estimation method is validated.
The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.
그간 디지털 포렌식의 활성 시스템 분석 분야의 한 화두는 물리 메모리 이미지 분석이었다. 물리 메모리 분석은 프로세스를 은닉을 하더라도 그 데이터를 물리 메모리에서 확인할 수 있고 메모리에 존재하는 사용자의 행위를 발견할 수 있어 분석 결과의 신뢰성을 높이는 등 디지털 포렌식 분석에 큰 도움이 되고 있다. 하지만 메모리 분석 기술 대부분이 윈도우 운영체제 환경에 초점이 맞추어져 있다. 이는 분석 대상의 다양성을 고려하였을 때 타 운영체제에 대한 메모리 분석이 필요하게 되었음을 의미한다. Mac OS X는 윈도우에 이어 두 번째로 높은 점유율을 가진 운영체제로 부팅 시 커널 이미지를 물리 메모리에 로딩하면서 운영체제가 구동하고 주요 정보를 커널이 관리한다. 본 논문은 Mac OS X의 커널 이미지가 저장하고 있는 심볼 정보를 이용한 물리 메모리 분석 방법을 제안하고, 제안한 내용을 토대로 물리 메모리 이미지에서 프로세스 정보와 마운트된 장치 정보, 커널 버전 정보, 외부 커널 모듈정보(KEXT)와 시스템 콜 목록 정보의 추출 방법을 보인다. 추가적으로 사례 분석을 통해 물리 메모리 분석의 효용성을 입증한다.
Communications for Statistical Applications and Methods
/
제9권3호
/
pp.577-594
/
2002
For the estimation and test of long memory feature in volatilities of stock indices and individual companies semiparametric approach, Geweke and Porter-Hudak (1983), is employed. Empirical study supports the strong evidence of volatility persistence in Korean stock market. Most of indices and individual companies have the feature of long term dependence of volatility. Hence the short memory models are unable to explain the volatilities in Korean stock market.
Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.
In semiconductor memory device manufacturing, the capability for high aspect ratio contact (HARC) etching determines the density of memory device. Given that there is no standardized definition of "high" in high aspect ratio, it is crucial to continuously monitor recent technology trends to address technological gaps. Not only semiconductor memory manufacturing companies such as Samsung Electronics, SK Hynix, and Micron but also semiconductor manufacturing equipment companies such as Lam Research, Applied Materials, Tokyo Electron, and SEMES release annual reports on HARC etching technology. Although there is a gap in technological focus between semiconductor mass production environments and various research institutes, the results from these institutes significantly contribute by demonstrating fundamental mechanisms with empirical evidence, often in collaboration with industry researchers. This paper reviews recent studies on HARC etching and the study of dielectric etching in various technologies.
최근 VLSI 회로 직접도가 급속도로 증가함에 따라 하나의 시스템 칩에 고밀도와 고용량의 내장 메모리(Embedded Memory)가 구현되고 있다. 고장난 메모리를 여분 메모리(Spare Memory)로 재배치함으로써 메모리 수율 향상과 사용자에게 메모리를 투명하게 사용할 수 있도록 제공할 수 있다. 본 논문에서는 고장난 메모리 부분을 여분 메모리의 행과 열 메모리 사용으로 고장난 메모리를 고장이 없는 메모리처럼 사용할 수 있도록 여분 메모리 재배치 알고리즘인 MRI를 제안하고자 한다.
In this paper, a new type of output feedback control, called a receding horizon finite memory control (RHFMC), is proposed for stochastic discrete-time state space systems. Constraints such as linearity and finite memory structure with respect to an input and an output, and unbiasedness from the optimal state feedback control are required in advance. The proposed RHFMC is chosen to minimize an optimal criterion with these constraints. The RHFMC is obtained in an explicit closed form using the output and input information on the recent time interval. It is shown that the RHFMC consists of a receding horizon control and an FIR filter. The stability of the RHFMC is investigated for stochastic systems.
Naive Bayes nearest neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descriptors and has a powerful generalization characteristic. However, it has a distinct disadvantage. Its memory requirement can be prohibitively high while processing a large amount of data. To deal with this problem, we apply a spherical hashing binary code embedding technique, to compactly encode data without significantly losing classification accuracy. We also propose using an inverted index to identify nearest neighbors among binarized image descriptors. To demonstrate the benefits of our method, we apply our method to two existing NBNN techniques with an image dataset. By using 64 bit length, we are able to reduce memory 16 times with higher runtime performance and no significant loss of classification accuracy. This result is achieved by our compact encoding scheme for image descriptors without losing much information from original image descriptors.
LRR(Loose Round Robin) warp scheduling policy for GPU architecture results in high warp-level parallelism and balanced loads across multiple warps. However, traditional LRR policy makes multiple warps execute long latency operations at the same time. In cases that no more warps to be issued under long latency, the throughput of GPUs may be degraded significantly. In this paper, we propose a new warp scheduling policy which utilizes latency hiding, leading to more utilized memory resources in high performance GPUs. The proposed warp scheduler prioritizes memory instruction based on GTO(Greedy Then Oldest) policy in order to provide reduced memory stalls. When no warps can execute memory instruction any more, the warp scheduler selects a warp for computation instruction by round robin manner. Furthermore, our proposed technique achieves high performance by using additional information about recently committed warps. According to our experimental results, our proposed technique improves GPU performance by 12.7% and 5.6% over LRR and GTO on average, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.