
Copyright 2017. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 11, No. 1, March 2017, pp. 1-8

Memory-Efficient NBNN Image Classification
YoonSeok Lee and Sung-Eui Yoon*

School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

ys.lee@kaist.ac.kr, sungeui@gmail.com

Abstract
Naive Bayes nearest neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses

original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descrip-

tors and has a powerful generalization characteristic. However, it has a distinct disadvantage. Its memory requirement

can be prohibitively high while processing a large amount of data. To deal with this problem, we apply a spherical hash-

ing binary code embedding technique, to compactly encode data without significantly losing classification accuracy. We

also propose using an inverted index to identify nearest neighbors among binarized image descriptors. To demonstrate

the benefits of our method, we apply our method to two existing NBNN techniques with an image dataset. By using 64

bit length, we are able to reduce memory 16 times with higher runtime performance and no significant loss of classifica-

tion accuracy. This result is achieved by our compact encoding scheme for image descriptors without losing much infor-

mation from original image descriptors.

Category: Smart and intelligent computing

Keywords: Image classification; NBNN; Hashing; Memory efficiency; Indexing

I. INTRODUCTION

Image classification assigns an appropriate class label

to a query image, and has been studied as an important

task in the computer vision field for a long time.

Among many available classification techniques, naïve

Bayes nearest neighbor (NBNN) [1] is one popular image

classifier that does not require an explicit learning pro-

cess. NBNN is designed based on the naïve Bayes

assumption and using nearest neighbor search. It usually

uses local descriptors (e.g., SIFTs), which are densely

extracted from a query image. Unlike many other con-

ventional image classifiers, NBNN does not perform

descriptor quantization, like bags-of-words for compact

representation. Instead, NBNN utilizes original image

descriptors since they maintain discriminative power. As

the distance metric, NBNN uses “image-to-class” dis-

tances measured with all the available classes by identify-

ing the nearest neighbor for each local descriptor, and

assigns a class that has the minimum sum of distances to

the class type of a query image.

The NBNN approach has advantages over other learn-

ing based techniques for image classification. NBNN is

theoretically simple and easy to implement. It is also easy

to modify NBNN for a particular purpose. For example,

NBNN is adjusted for solving domain adaptation prob-

lems [2]. Furthermore, NBNN shows high generalization

power [3], since it works mainly in a data-driven way

without tuning parameters for a particular dataset.

Recently, convolutional neural networks (CNNs) [4]

are achieving high classification accuracy and thus

receiving significant attention. Also, follow-up studies

Received 13 September 2016; Accepted 13 December 2016

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2017.11.1.1 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2017.11.1.1 2 YoonSeok Lee and Sung-eui Yoon

are being actively conducted [5, 6]. Interestingly, there is

a recent study [7] for combining CNNs and NBNN to

achieve even higher accuracy. Furthermore, NBNN tech-

niques can be used in situations where using deep CNNs

is not appropriate due to their long training time.

Nonetheless, NBNN has certain drawbacks such as

low accuracy compared to recent convolutional neural

net based approaches, slow runtime performance, and

high memory requirements. Accuracy and slow perfor-

mance have been addressed by many prior approaches [3,

8-10], but the memory issue has not been well addressed,

according to the best of our knowledge.

Main contributions. In this paper, we propose a mem-

ory efficient NBNN technique. To compactly represent

image descriptors, we apply a binary code embedding

technique to map original local image descriptors into

short binary codes. We then perform an approximate, yet

fast, nearest neighbor search using an inverted index

structure associated with those binary codes.

To verify benefits of our method, we test our method

against a standard image dataset, and compare our

method against two well-known NBNN approaches: the

original NBNN and the local NBNN that improves the

performance of the original NBNN. Using our method,

we are able to observe faster running performance and

lower required memory without a significant loss of clas-

sification accuracy. Especially, when we use 64 bit length

for binary codes, we are able to achieve a 16 times mem-

ory reduction over those two NBNN approaches, while

achieving 12 times and 1.125 times faster running perfor-

mance over the original and local NBNNs, respectively.

These results are achieved by accurately embedding orig-

inal descriptors into compact binary codes. To encourage

further research, the source code of our approach will be

available (http://sglab.kaist.ac.kr/projects/NBNN_Memory).

II. RELATED WORK

In this section, we review prior approaches that are

directly related to our method.

A. NBNN

NBNN [1] uses original image descriptors to preserve

the discriminative power of the features instead of using

descriptor quantization method like bag-of-words, which

is used in many other image classifiers. In addition,

NBNN utilizes the image-to-class distance metric in

order to generalize the characteristics of each class in

contrast to other methods using the classical image-to-

image distance. Therefore, it can classify images success-

fully by searching local descriptors similar to the query

descriptors among all the descriptors, even if there are no

matching images to the query image in the dataset.

To address drawbacks of the original NBNN and

extend it to other related problems, many studies have

been proposed. Optimal NBNN [11] studied parameters

to consider the assumptions that were made for designing

NBNN, and dependencies among the local features are

also studied [10]. Recently, NBNN was utilized for a data

adaptation problem [2] and image retrieval [7].

In order to address a high runtime overhead in query-

ing, McCann and Lowe [9] proposed local NBNN, which

only calculates the distance from the query descriptors to

others in a single time, instead of performing the search

iteratively with all the classes. However, the memory

scalability problem using unquantized original descrip-

tors has not yet been given much consideration.

Nearest neighbor search. Exact or approximate near-

est neighbor search has been widely studied. One of the

most common acceleration data structures for the search

is kd-trees [12]. The kd-trees have also been widely

adopted in many computer vision and various optimiza-

tion techniques [13]. Other well-known optimization

techniques in the computer vision field include random-

ized kd-trees [14] and relaxed orthogonality of partition

axes [15]. Muja and Lowe [16] have proposed an auto-

matic parameter selection algorithm of some of these

techniques (e.g., [14]). Nonetheless, many hierarchical

techniques including ones based on kd-trees have been

known to work ineffectively for high dimensional problems.

B. Hashing

As an approximate, yet scalable nearest neighbor

search approach, hashing techniques have been exten-

sively studied recently. These techniques can be broken

into two categories: data-independent and data-dependent

techniques. Data-dependent techniques [17, 18] can produce

higher accuracy for the search problem, by computing

hashing functions considering input data. Unfortunately,

most of these techniques tend to rely on learning tech-

niques or require high computation time. Therefore, we

focus on data-independent techniques, which are more

suitable for NBNN approaches.

The most well-known technique under the data-inde-

pendent category is locality sensitive hashing [19]. This

technique draws hyperplanes randomly from a certain

distribution function, and uses them for hashing func-

tions. This technique has been generalized in many dif-

ferent directions including supporting different distance

metrics [20] and GPU acceleration [21].

These hashing functions can be used for encoding

input data into binary codes. Recently, hypersphere based

hashing function and binary code embedding technique

has been proposed [22]. This technique can generate

more closed regions in high dimensional spaces, resulting

in high accuracy for an approximate neighbor search.

This property can preserve the distances between the

Memory-Efficient NBNN Image Classification

YoonSeok Lee and Sung-eui Yoon 3 http://jcse.kiise.org

original data with their corresponding binary codes. Due

to this high accuracy, we used it for encoding image

descriptors and used their binary codes for NBNN tech-

niques.

III. MEMORY-EFFICIENT NBNN

In this section, we first explain the original NBNN

technique. We then explain the two main components of

our method: binarization and inverted indexing.

A. NBNN based Classification

Let us represent an image I as a set of local descriptors,

i.e., I = {d1, d2, …, dn}. In order to classify the image with

NBNN, we define and measure the image-to-class dis-

tance, DItC, which uses a descriptor-to-class distance,

DDtC. We also define NNc(d) to be the nearest neighbor

descriptor to the given descriptor d among descriptors

assigned to the class c. The descriptor-to-class and image-

to-class distances can be then defined as follows:

(1)

(2)

where n is the number of the local descriptors extracted

from the image I.

NBNN identified a class of an image I according to the

following equation, which is derived by simplifying the

maximum likelihood classifier based on the naïve Bayes

probabilistic model [1]:

(3)

NBNN technique relies on computing the nearest

neighbor given a descriptor. This nearest neighbor search

is efficiently supported by approximate nearest neighbor

(ANN) search methods using kd-trees [12]. By utilizing

kd-trees, we can achieve fast search performance. None-

theless, we found that this nearest neighbor search is still

the main bottleneck of NBNN and can take 85% of the

total computation of the NBNN method in our experi-

ment. Furthermore, there is a high memory requirement

for storing local descriptors and tree-based indexing

structure.

B. Binarization of Descriptors

Our main goal is to perform nearest neighbor search in

a memory efficient manner, which is the main computa-

tional component of NBNN techniques. Fortunately,

nearest neighbor search has been well studied for high-

dimensional data such as our image descriptors. Espe-

cially, for such high-dimensional problems, hashing tech-

niques have been demonstrated to work well and well-

known examples include locality sensitive hashing [19].

These hashing techniques can work as binary code

embedding that compactly represents data points based

on hashing functions.

In order to present image descriptors as a binary code

for our problem, we utilize spherical hashing [22]. Spher-

ical hashing is one of the state-of-the-art methods to rep-

resent high dimensional points into compact binary

codes. Most prior works used hyperplanes to partition

data into two sets and to encode those partitioned data

with one bit (0 for one set or 1 for the other set).

On the other hand, spherical hashing computes binary

codes based on hyperspheres, each of which tightly

bounds input data. While D + 1 hyperplanes are required

to define a closed region in a D dimensional space, one

hypersphere is enough to define such a closed region. In

other words, the average of the maximum distances

among points with the same binary code can be bounded,

and thus errors caused by representing original data into

such binary codes can be bounded also. This results in

better approximate nearest search while compactly repre-

senting data. Thanks to this property, spherical hashing

has been demonstrated to show higher accuracy over

other hyperplane based techniques given the same num-

ber of bit lengths. Nonetheless, any binary code embed-

ding techniques can be used instead of spherical hashing,

our chosen method for this work.

Suppose that we represent an image descriptor, d, to a

binary code, b, by using a binary code embedding or

hashing method, h(·); i.e., b = h(d). The image I is then

represented as a set of binary codes, Ib = {b1, b2, …, bn},

which are computed by applying the hashing function to

the original image descriptors.

Once we represent descriptors into binary codes, we

cannot use distance functions defined with those original

image descriptors. Instead, we define a distance function

between a binary code and a class, DBtC, as the following:

(4)

where HD(·, ·) is the Hamming distance between two

binary codes. By replacing DDtC by DBtC in Eqs. (2) and

(3), we have the classification function for our method

using binary codes:

(5)

(6)

While we can represent image descriptors with binary

codes, we lose information of original image descriptors

during binary code embedding. As a result, the accuracy

DDtC d, c() d NNc d()– ,=

DItC I, c() DDtC di, c(),
i=1

n

∑=

ĉ minarg
c

= DItC I, c()

DBtC b, c() HD b, NNc b()(),=

DI
b
tC I, c() DBtC bi, c(),

i=1

n

∑=

ĉ minarg
c

= DI
b
tC I, c()

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2017.11.1.1 4 YoonSeok Lee and Sung-eui Yoon

of our approximate nearest neighbor search goes down,

as a smaller bit is used for encoding binary codes. We

discuss behaviors of accuracy and memory requirement

of bit lengths in Section IV.

C. Indexing

We can reduce the memory requirement by applying

binary hashing to the image descriptors. However, we

still have the issue of query time scalability. Since the

nearest neighbor operation on original image descriptors

causes a time scalability problem taking most of the

query time in the original NBNN, the nearest neighbor

operation on binary codes can also cause a similar problem

if we use a linear search algorithm to find the closest code.

To address this time scalability problem, we need a

proper indexing method to perform accurate, yet fast

nearest neighbor searches. Unfortunately, ANN using kd-

trees can be applied even to the nearest neighbor search

on binary codes, but its performance would be very inef-

ficient, since kd-trees work well mainly for low-dimen-

sional problems.

To support an efficient search of identifying nearest

neighbors to the given query, we adopt an inverted index-

ing structure as illustrated in Fig. 1. To build the inverted

index, we perform the following steps:

1. Computing clusters. We perform k-means cluster-

ing on the original descriptors to build clusters. Any

clustering methods can be used instead of the simple

k-means clustering. Especially, product quantization

has been demonstrated to work well with binary

codes and high-dimensional descriptors [23].

2. Assigning to the closet cluster. For each original

descriptor, we identify its closest cluster by comput-

ing the distance between the descriptor and centers

of the clusters. Instead of storing the original

descriptor, we compute a binary code of the descrip-

tor and associate the binary code with the cluster.

We can then efficiently organize our inverted index

with our binary codes. When we want to access their

original descriptors and images, we also store these

data associated with each cluster in a secondary

memory space (e.g., disk).

For simplicity, we explained the simple, inverted

index. Recently, multi-index has been proposed [24], and

can be more complex, yet more efficient for large-scale

problems.

At a query time, we use the computed inverted index

as the following:

1. Finding the nearest cluster. Given a query, we

identify the nearest cluster among the cluster centers.

2. Identifying k nearest neighbors. Given the nearest

cluster, we access binary codes of image descriptors

associated with the cluster. We first convert the

image descriptor of the query into a binary code. We

then measure the Hamming distances between

Fig. 1. The top row shows the inverted indexing structure for our method, while the bottom row shows how to access the structure to
identify nearest neighbors. (a) Build the inverted index and (b) query the input descriptor. Blue, red, and green dots represent training
image descriptors, cluster centers, and a query image descriptor, respectively.

Memory-Efficient NBNN Image Classification

YoonSeok Lee and Sung-eui Yoon 5 http://jcse.kiise.org

binary codes of the query and others associated with

the cluster. By performing sorting according to the

computed Hamming distance, we can identify k

nearest neighbors.

Using the inverted index, we can efficiently identify

potential candidates of k nearest neighbors from the

query data. This inverted index requires the number of

clusters for computing center clusters. Depending on the

number of clusters, we can control the number of descrip-

tors per cluster. In Section IV-B, we discuss the effects of

varying the number of clusters.

IV. EXPERIMENTS

In this section, we performed experiments to compare

the performance of our memory efficient NBNN to those

of original NBNN and local NBNN methods. Especially,

we focused on the query time, classification accuracy,

and memory usage of different NBNN based image clas-

sification methods.

A. Implementation and Datasets

We used 101 classes of Caltech-101 image dataset

[25], excluding the background class. We utilized densely

extracted SIFTs [26] as the local descriptors. For extract-

ing SIFTs densely, we divide an image into multi-resolu-

tion grids instead of using an ordinary keypoint

extracting algorithm, and extracted features in a multi-

scale manner.

We followed the experiment protocol laid out by the

prior work [1] to set the experiment environment for our

paper. We randomly choose 15 training images and 15

test images for each class. The 64 bit code length is used,

unless mentioned otherwise, when binary code embed-

ding is applied to descriptors.

We implemented NBNN [1] and local NBNN [9]

based on the guidelines mentioned in their corresponding

papers. These methods utilize a fast approximate nearest

neighbor search method, FLANN [16], to efficiently

identify nearest neighbors based on kd-trees. We used L1

and L2 distances to calculate the distance between origi-

nal image descriptors, and used the Hamming distance to

measure the distance between binary codes for our method.

The memory requirement of our method can be con-

trolled by changing the number of bits used for the hash-

ing function. For example, if we use 64 bit code length

for our hashing function, which is long enough to main-

tain the classification accuracy in most cases, a single

SIFT descriptor whose size is 128 B can be reduced by a

factor of 16 times. Even though the order of the space

complexity remains unchanged, reducing the memory

requirement even with a constant factor is highly effec-

tive. Especially, when the raw data size that is bigger than

hardware memory capacity is reduced and fit into the

available memory capacity, we can observe drastic per-

formance improvement. This is due to the drastic differ-

ence of accessing speed between main memory and

auxiliary memory like a hard disk [27].

B. Results

We performed experiments to compare the perfor-

mance of our memory efficient NBNN classifier com-

bined with spherical hashing (NBNN+SH) with the

original NBNN. We also apply spherical hashing to the

Local NBNN method (Local NBNN+SH) [9] and com-

pare its performance with the original local NBNN

(Local NBNN). The classification accuracy and query

time of tested classification methods are shown in Fig. 2.

We measure classification accuracy as the ratio of the

correctly classified query images over all the test images.

The average query time per image is calculated by mea-

suring the total time taken for classifying all test images

and dividing it by the number of test images.

We set the number of clusters to be 30 in NBNN+SH

and 2,000 in Local NBNN+SH. Our methods also adopt

the same numbers of clusters. We set these parameters

differently because when the number of descriptors in an

indexing scheme becomes bigger, the number of clusters

should be bigger for better performance. For NBNN, the

number of descriptors in a single indexing scheme is

much smaller than that of Local NBNN. This is because

NBNN builds an indexing structure for each class, while

Local NBNN manages all the descriptors in a single

indexing structure.

First of all, we observe faster running time and higher

accuracy using the local NBNN over the original NBNN,

as demonstrated by the paper of local NBNN [9]. Fur-

thermore, by using our method applying the spherical

hashing and the inverted index to those prior NBNN tech-

Fig. 2. Average classification accuracy and query time of
different methods. Our methods (NBNN+SH and Local NBNN+SH)
show better query performance over their corresponding
methods (NBNN and Local NBNN, respectively), while maintaining
or showing even higher classification accuracy. For the test, we
use 64 bit code length for our methods.

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2017.11.1.1 6 YoonSeok Lee and Sung-eui Yoon

niques, we are able to observe higher query performance

without a significant loss of accuracy. For the case of

NBNN, the query performance of NBNN+SH is more

than 10 times faster than that of NBNN even with a slight

accuracy improvement. This drastic performance improve-

ment is achieved mainly because computing the Ham-

ming distance between binary codes is much faster than

the Euclidean computation between the original SIFT

descriptors. We also conjecture that hashing, as a type of

dimension reduction technique, cancels variance of image

descriptors of the same object, resulting in a slightly higher

accuracy in this case.

We observe the similar trend even between Local

NBNN+SH and Local NBNN. Comparing Local NBNN+SH

to Local NBNN, our method shows about three times

performance improvement, while the classification accu-

racies are also similar.

We also measure the memory requirement of different

methods. Our methods combined with spherical hashing

show a significant advantage over the original NBNN

methods, because only 8 bytes are used to represent a

binary code, while 128 bytes are needed to represent one

SIFT descriptor. This difference results in 16 times less

memory usage excluding the overhead for constructing

the indexing scheme, while preserving classification accu-

racy and improving query time. Fig. 3 shows the memory

requirements of different methods tested in our experi-

ment environment. Considering that the SIFT descriptor

is relatively lower dimensional data among available

image descriptors, more advantage can be observed in

higher dimensional spaces such as features from convolu-

tional neural nets.

We also investigated the effects of having different

numbers of clusters in our indexing structure used with

the binary codes (Table 1). For the test, we use the local

NBNN combined with spherical hashing. In all the tested

cases, the classification accuracies are similar to one

another, ranging between 42% and 46%. The overall

query time gets smaller when the number of clusters gets

larger, but gets longer when the number of clusters

becomes too large (e.g., 4 k clusters) for the tested data-

set. When we have a small number of clusters, finding the

nearest cluster is fast, but the cluster is associated with

many images and therefore requires a long computation

time to find the nearest image among them to the given

query image. On the other hand, when the number of

clusters is too high, finding the nearest cluster takes a

long time, resulting in a longer computation time. Given

this trade-off, the best performance is achieved when we

have 2 k clusters for the tested benchmark.

While our methods are not directly tested on large-

scale data consisting of more than one million images, we

discuss the memory requirement briefly here when differ-

ent NBNN methods are applied to such large-scale data.

In the case of ILSVRC2010 [28], which is a popular

large-scale image dataset consisting of 1,000 classes, the

memory requirement for descriptors is less than 2 GB for

the local NBNN+SH, when 500 training images are used

for each class. On the other hand, more than 30 GB is

required for using the local NBNN. We assume that 512

SIFT features are extracted from each image the same as

the case of the other tested experiment with the Caltech

image dataset.

V. CONCLUSION & FUTURE WORKS

In this paper, we have applied a binary code embed-

ding, spherical hashing, to NBNN based image classifiers

Fig. 3. Memory requirement of image descriptors used in
different methods. Our method uses 8 bytes for binary codes,
while prior NBNN methods use SIFTs, which are encoded by 128
bytes. In terms of image descriptors, there is no difference
between NBNN and local NBNN methods.

Table 1. Effects of having varying numbers of clusters for Local NBNN+SH

Number of clusters

50 100 1,000 2,000 4,000

Query time (ms) 2144 1060 146 123 322

Time for finding nearest center (ms) 16 33 31 33 34

Time for finding nearest binary code (ms) 1610 791 99 69 50

Accuracy (%) 44.09 42.90 44.88 44.42 42.97

We achieve the best performance when we have 2 k clusters for the local NBNN combined with spherical hashing (SH).

Memory-Efficient NBNN Image Classification

YoonSeok Lee and Sung-eui Yoon 7 http://jcse.kiise.org

to compactly represent descriptors used for classifiers.

We have also tested the inverted index for efficiently per-

forming the approximate nearest neighbor search with

those computed binary codes. To demonstrate the bene-

fits of our methods, we tested them in a well-known

benchmark, the Caltech-101 image dataset. When we

used 64 bit length, we were able to observe that the pro-

posed methods show similar classification accuracy and

query speed, while reducing the memory requirement by

a factor of 16 over prior NBNN methods. This is mainly

achieved thanks to accurate binary code embedding

adopted together with the inverted index structure.

Many interesting research directions lie ahead. We

would like to utilize global image features such as fea-

tures from convolution neural net [4]. Because NBNN

classifiers assume local image descriptors as local fea-

tures, extending NBNN classifiers to work with global

features is an interesting research problem. Since we

have verified the benefits of the inverted index structure,

it would be worthwhile to investigate other advanced

techniques such as multi-index and the recent shortlist

selection method [24] designed for efficient, high-dimen-

sional nearest neighbor search. We believe that this line

of research helps to improve the scalability of NBNN

based approaches, which is an important data driven clas-

sification method.

ACKNOWLEDGMENTS

This work is performed in part by MSIP/NRF (No.

2013-067321) and MSIP/IITP (No. R0126-16-1108).

REFERENCES

1. O. Boiman, E. Schechtman, and M. Irani, “In defense of

nearest neighbor based image classification,” in Proceedings

of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), Anchorage, AK, 2008, pp. 1-8.

2. T. Tommasi and B. Caputo, “Frustratingly easy NBNN

domain adaptation,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), Sydney,

2013, pp. 897-904.

3. I. Kuzborskij, F. Maria Carlucci, and B. Caputo, “When

naive Bayes nearest neighbors meet convolutional neural

networks,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), Las Vegas,

NV, 2016, pp. 2100-2109.

4. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

Advances in Neural Information Processing Systems, vol. 25,

pp. 1097-1105, 2012.

5. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Colum-

bus, OH, 2014, pp. 580-587.

6. N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-

based R-CNNs for fine-grained category detection,” in Pro-

ceedings of European Conference on Computer Vision,

Zurich, Switzerland, 2014, pp. 834-849.

7. L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classifica-

tion and retrieval are one,” in Proceedings of the 5th ACM

on International Conference on Multimedia Retrieval

(ICMR), Shanghai, China, 2015, pp. 3-10.

8. T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, “The

NBNN kernel,” in Proceedings of 2011 IEEE International

Conference on Computer Vision (ICCV), Barcelona, Spain,

2011, pp. 1824-1831.

9. S. McCann and D. G. Lowe, “Local naive Bayes nearest

neighbor for image classification,” in Proceedings of 2012

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), Providence, RI, 2012, pp. 3650-3656.

10. M. Sun, Y. Lee, and S. E. Yoon, “Relation based Bayesian

network for NBNN,” Journal of Computing Science and

Engineering, vol. 9, no. 4, pp. 204-213, 2015.

11. R. Behmo, P. Marcombes, A. Dalalyan, and V. Prinet,

“Towards optimal naive Bayes nearest neighbor,” in Pro-

ceedings of European Conference on Computer Vision,

Crete, Greece, 2010, pp. 171-184.

12. J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algo-

rithm for finding best matches in logarithmic expected time,”

ACM Transactions on Mathematical Software (TOMS), vol.

3, no. 3, pp. 209-226, 1977.

13. K. Kim, M. K. Hasan, J. P. Heo, Y. W. Tai, and S. E. Yoon,

“Probabilistic cost model for nearest neighbor search in

image retrieval,” Computer Vision and Image Understand-

ing, vol. 116, no. 9, pp. 991-998, 2012.

14. C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast

image descriptor matching,” in Proceedings of IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

Anchorage, AK, 2008, pp. 1-8.

15. Y. Jia, J. Wang, G. Zeng, H. Zha, and X. S. Hua, “Optimiz-

ing kd-trees for scalable visual descriptor indexing,” in Pro-

ceedings of 2010 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), San Francisco, CA, 2010, pp.

3392-3399.

16. M. Muja and D. G. Lowe, “Fast approximate nearest neigh-

bors with automatic algorithm configuration,” in Proceed-

ings of the International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Appli-

cations (VISAPP), Lisbon, Portugal, 2009, pp. 331-340.

17. J. Wang, S. Kumar, and S. F. Chang, “Semi-supervised hash-

ing for scalable image retrieval,” in Proceedings of 2010

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), San Francisco, CA, 2010, pp. 3424-3431.

18. Y. Gong and S. Lazebnik, “Iterative quantization: a procrus-

tean approach to learning binary codes,” in Proceedings of

2010 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Providence, RI, 2011, pp. 817-824.

19. P. Indyk and R. Motwani, “Approximate nearest neighbors:

towards removing the curse of dimensionality,” in Proceed-

ings of the 30th Annual ACM Symposium on Theory of

Computing, Dallas, TX, 1998, pp. 604-613.

20. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 1-8

http://dx.doi.org/10.5626/JCSE.2017.11.1.1 8 YoonSeok Lee and Sung-eui Yoon

“Locality-sensitive hashing scheme based on p-stable distri-

butions,” in Proceedings of the 20th Annual Symposium on

Computational Geometry, Brooklyn, NY, 2004, pp. 253-262.

21. J. Pan and D. Manocha, “Fast GPU-based locality sensitive

hashing for k-nearest neighbor computation,” in Proceed-

ings of the 19th ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems,

Chicago, IL, 2011, pp. 211-220.

22. J. P. Heo, Y. Lee, J. He, S. F. Chang, and S. E. Yoon,

“Spherical hashing,” in Proceedings of 2012 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

Providence, RI, 2012, pp. 2957-2964.

23. H. Jegou, M. Douze, and C. Schmid, “Product quantization

for nearest neighbor search,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117-

128, 2011.

24. J. P. Heo, Z. Lin, X. Shen, J. Brandt, and S. E. Yoon,

“Shortlist selection with residual-aware distance estimator for

k-nearest neighbor search,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, 2016, pp. 2009-2017.

25. L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative

visual models from few training examples: an incremental

Bayesian approach tested on 101 object categories,” in Pro-

ceedings of IEEE Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), Washington, DC,

2004, pp. 1-9.

26. D. G. Lowe, “Distinctive image features from scale-invari-

ant keypoints,” International Journal of Computer Vision,

vol. 60, no. 2, pp. 91-110, 2004.

27. S. E. Yoon, C. Lauterbach, and D. Manocha, “R-LODs: fast

LOD-based ray tracing of massive models,” The Visual

Computer, vol. 22, no. 9, pp. 772-784, 2006.

28. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, et al., “ImageNet large scale visual recognition chal-

lenge,” International Journal of Computer Vision, vol. 115,

no. 3, pp. 211-252, 2015.

YoonSeok Lee

YoonSeok Lee is a software engineer at the Digital Content & Audio Platform team of NAVER Corp.,
Seongnam, Korea. He received the B.S. and M.S. degrees in computer science from KAIST in 2014 and 2016,
respectively. His research interest lies in image classification, image representation and hashing techniques.

Sung-Eui Yoon

Sung-Eui Yoon is currently an associate professor at KAIST. He received the B.S. and M.S. degrees in computer
science from Seoul National University in 1999 and 2001, respectively. His main research interest is in
designing scalable graphics, image search, and geometric algorithms. He gave numerous tutorials on
proximity queries and large-scale rendering at various conferences including ACM SIGGRAPH and IEEE
Visualization. Some of his work received a distinguished paper award at Pacific Graphics, invitations to IEEE
TVCG, an ACM student research competition award, and other domestic research-related awards. He is a
senior member of IEEE, and a member of ACM and KIISE.

