Browse > Article
http://dx.doi.org/10.4062/biomolther.2013.074

Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice  

Kwon, Seung-Hwan (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Ma, Shi-Xun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Joo, Hyun-Joong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.21, no.6, 2013 , pp. 462-469 More about this Journal
Abstract
Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.
Keywords
Eucommia ulmoides Oliv. Bark; Scopolamine; Learning and memory; Brain-derived neurotrophic factor; cAMP element binding protein; Alzheimer's disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong, E. J., Lee, K. Y., Kim, S. H., Sung, S. H. and Kim, Y. C. (2008) Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. Eur. J. Pharmacol. 588, 78-84.   DOI   ScienceOn
2 Jia, Y., Gall, C. M. and Lynch, G. (2010) Presynaptic BDNF promotes postsynaptic longterm potentiation in the dorsal striatum. J. Neurosci. 30, 14440-14445.   DOI   ScienceOn
3 Joseph, J. A., Strain, J. G., Jimenez, N. D. and Fisher, D. (1997) Oxidant injury in PC12 cells--a possible model of calcium "dysregulation" in aging: I. Selectivity of protection against oxidative stress. J. Neurochem. 69, 1252-1258.
4 Kempermann, G. (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163-169.   DOI   ScienceOn
5 Kim, D. H., Hung, T. M., Bae, K. H., Jung, J. W., Lee, S., Yoon, B. H., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur. J. Pharmacol. 542, 129-135.   DOI   ScienceOn
6 Komulainen, P., Pedersen, M., Hanninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto, M., Hassinen, M., Rauramaa, T. H., Pedersen, B. K. and Rauramaa, R. (2008) BDNF is a novel marker of cognitive function in ageing women: the DR's EXTRA Study. Neurobiol. Learn. Mem. 90, 596-603.   DOI   ScienceOn
7 Kopelman, M. D. and Corn, T. H. (1988) Cholinergic 'blockade' as a model for cholinergic depletion. A comparison of the memory defi-cits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111 (Pt 5), 1079-1110.   DOI   ScienceOn
8 Kwon, S. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2009) Loganin improves learning and memory impairments induced by scopolamine in mice. Eur. J. Pharmacol. 619, 44-49.   DOI   ScienceOn
9 Kwon, S. H., Kim, M. J., Ma, S. X., You, I. J., Hwang, J. Y., Oh, J. H., Kim, S. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2012) Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. J. Ethnopharmacol. 142, 337-345.   DOI   ScienceOn
10 Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, H. C., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y. and Jang, C. G. (2010) Neuroprotective effects of chlorogenic acid on scopolamineinduced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649, 210-217.   DOI   ScienceOn
11 Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, S. Y., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y. and Jang, C. G. (2011) Neuroprotective effects of Eucommia ulmoides Oliv. Bark on amyloid beta(25-35)-induced learning and memory impairments in mice. Neurosci. Lett. 487, 123-127.   DOI   ScienceOn
12 LeDoux, J. E. (1993) Emotional memory systems in the brain. Behav. Brain Res. 58, 69-79.   DOI   ScienceOn
13 Lee, M. K., Cho, S. Y., Kim, D. J., Jang, J. Y., Shin, K. H., Park, S. A., Park, E. M., Lee, J. S., Choi, M. S. and Kim, M. J. (2005) Duzhong (Eucommia ulmoides Oliv.) cortex water extract alters heme biosynthesis and erythrocyte antioxidant defense system in leadadministered rats. J. Med. Food 8, 86-92.   DOI   ScienceOn
14 Lovell, M. A., Ehmann, W. D., Butler, S. M. and Markesbery, W. R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 45, 1594-1601.   DOI   ScienceOn
15 Marcus, D. L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J. S., Strafaci, J. A. and Freedman, M. L. (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease. Exp. Neurol. 150, 40-44.   DOI   ScienceOn
16 Sakurai, T., Kato, T., Mori, K., Takano, E., Watabe, S. and Nabeshima, T. (1998) Nefiracetam elevates extracellular acetylcholine level in the frontal cortex of rats with cerebral cholinergic dysfunctions: an in vivo microdialysis study. Neurosci. Lett. 246, 69-72.   DOI   ScienceOn
17 Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M. and Nabeshima, T. (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav. Brain Res. 133, 135-141.   DOI   ScienceOn
18 O'Connell, C., Gallagher, H. C., O'Malley, A., Bourke, M. and Regan, C. M. (2000) CREB phosphorylation coincides with transient synapse formation in the rat hippocampal dentate gyrus following avoidance learning. Neural Plast. 7, 279-289.   DOI
19 Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A. and Winslow, J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 7, 695-702.   DOI   ScienceOn
20 Selkoe, D. J. (1994) Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438-447.   DOI   ScienceOn
21 Singh, B., Bhat, T. K. and Singh, B. (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J. Agric. Food Chem. 51, 5579-5597.   DOI   ScienceOn
22 Wang, W., Sun, F., An, Y., Ai, H., Zhang, L., Huang, W. and Li, L. (2009) Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613, 19-23.   DOI   ScienceOn
23 Yamada, K. and Nabeshima, T. (2003) Brain-derived neurotrophic factor/ TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267-270.   DOI   ScienceOn
24 Yu, S. P., Canzoniero, L. M. and Choi, D. W. (2001) Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13, 405-411.   DOI   ScienceOn
25 Beatty, W. W., Butters, N. and Janowsky, D. S. (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav. Neural Biol. 45, 196-211.   DOI   ScienceOn
26 Alberini, C. M. (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121-145.   DOI   ScienceOn
27 Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M., Pignataro, G., D'Alessio, A., Sirabella, R., Secondo, A., Sibaud, L. and Di Renzo, G. F. (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol. Lett. 139, 125-133.   DOI   ScienceOn
28 Bartus, R. T., Dean, R. L., 3rd, Beer, B. and Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408-414.   DOI
29 Becker, R., Giacobini, E., Elble, R., McIlhany, M. and Sherman, K. (1988) Potential pharmacotherapy of Alzheimer disease. A comparison of various forms of physostigmine administration. Acta Neurol. Scand. Suppl. 116, 19-32.
30 Ben-Barak, J. and Dudai, Y. (1980) Scopolamine induces an increase in muscarinic receptor level in rat hippocampus. Brain Res. 193, 309-313.   DOI   ScienceOn
31 Bierer, L. M., Haroutunian, V., Gabriel, S., Knott, P. J., Carlin, L. S., Purohit, D. P., Perl, D. P., Schmeidler, J., Kanof, P. and Davis, K. L. (1995) Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J. Neurochem. 64, 749-760.
32 Cheng, D. H. and Tang, X. C. (1998) Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol. Biochem. Behav. 60, 377-386.   DOI   ScienceOn
33 Collerton, D. (1986) Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19, 1-28.   DOI   ScienceOn
34 El-Sherbiny, D. A., Khalifa, A. E., Attia, A. S. and Eldenshary Eel, D. (2003) Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol. Biochem. Behav. 76, 525-533.   DOI   ScienceOn
35 Ellman, G. L., Courtney, K. D., Andres, V., Jr. and Feather-Stone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95.   DOI   ScienceOn
36 Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., Ding, J. and Geng, M. (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 374, 222-226.   DOI   ScienceOn
37 Francis, P. T., Palmer, A. M., Snape, M. and Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137-147.   DOI   ScienceOn