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Abstract – In this paper, we propose a new load forecasting method for smart air conditioning (A/C) 
based on the modified thermodynamics of indoor temperature and the unbiased finite memory 
estimator (UFME). Based on modified first-order thermodynamics, the dynamic behavior of indoor 
temperature can be described by the time-domain state-space model, and an accurate estimate of 
indoor temperature can be achieved by the proposed UFME. In addition, a reliable A/C load forecast 
can be obtained using the proposed method. Our study involves the experimental validation of the 
proposed A/C load forecasting method and communication construction between DR server and 
HEMS in a test bed. Through experimental data sets, the effectiveness of the proposed estimation 
method is validated. 
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1. Introduction 
 
With the advent of the smart grid project that offers a 

two-way communication infrastructure, a time-varying 
price can be provided to residential consumers individually. 
In reality, residential consumers have the potential to save 
money with time-varying electricity prices through the 
flexible operation of residential appliances [1-3]. Through 
a home energy management system (HEMS), residential 
consumers can manage their energy consumption of many 
residential appliances in response to dynamic pricing and 
participate in economic demand response (DR) [4-6]. A 
HEMS carries out optimal and automated load control 
for different types of load based on observation for the 
consumer’s comfort, home environment, and electricity 
bills. The ability to provide intelligent solutions for energy 
consumption is the most important issue in the design of a 
HEMS.  

One of the most complex tasks facing the smart grid 
project appears in energy demand forecasting. In particular, 
residential load forecasting is more difficult, because daily 
household consumption depends on the random nature of 
turning appliances on/off and consumers’ specific lifestyles 
[7-9]. 

However, accurate forecasting for appliance load is 
necessary when balancing between electricity supply and 
demand. With the increased proportion of houses with 
smart meters installed in many countries and DR support 

[10, 11], there have been several efforts to perform 
accurate load forecasting for residential appliances to 
ensure the efficient consumption of electrical energy. In 
particular, modeling home appliance loads plays an 
important role, since it is the first step to understanding and 
forecasting residential electricity consumption data. Many 
studies on load forecasting for residential appliances have 
been conducted over the years, and it remains a key factor 
of smart grid technology. 

Peak demand periods and worst cases such as blackouts 
usually occur during the summer or winter, because of the 
excessive use of thermal appliances (e.g., air conditioning 
[A/C] or electric heaters) by residential consumers. 
Many studies have shown that thermostatically controlled 
appliances have a significant effect on peak demand; thus, 
changes in the consumption pattern of thermal appliances 
is effective at saving costs in electricity bills and reducing 
overall peak demand, which is essential for utility and grid 
providers. The most common thermostatically controlled 
household appliance is the residential A/C, which occupies 
a significant portion of residential load consumption [12-
14]. There are several studies about scheduling A/C by 
anticipating the thermodynamics [15-17] of the indoor 
temperature. These results emphasize that the model- based 
analysis of indoor temperature gives efficient load control 
for thermodynamics appliances, because estimating the 
indoor temperature is essential for load forecasting of 
thermodynamics appliances in a household. In addition, 
an efficient DR reaction can be achieved by offering 
consumers temperature information before and after DR 
reactions. 

In recent years, considerable attention and effort have 
been given to the design of finite memory state estimation 
(FMSE) as an alternative to infinite impulse response 
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(IIR)-type estimation [18-22]. Because IIR-type estimation 
uses all past input/output information to produce state 
estimates, poor estimation performance or divergence may 
be exhibited due to the accumulation of modeling and 
computational errors [23, 24]. While the Kalman filter 
may exhibit poor performance or even divergence if the 
system has more model parameter uncertainty, FIR filters 
have robustness against model parameter uncertainty and 
incorrect noise information. Furthermore, FMSE can 
prevent error accumulation problem because it only uses 
recent finite measurements and shows superior reliability. 
In addition, given its structural characteristics, the 
advantages of FMSE include bounded-input bounded-
output (BIBO) stability and robustness against temporary 
model uncertainties, incorrect noise information, and 
quantization effects. FMSE may be used independently or 
combined with IIR estimator to overcome its disadvantages 
[31, 32]. Despite these advantages, the existing literature 
does not yet include studies that have focused on the 
estimation of indoor temperature using FMSE; this lack of 
effective research results motivates this study. 

Since residential A/C consumption significantly affects 
peak demand, the development of residential A/C load 
forecasting is imperative. In this paper, we provide a new 
A/C load consumption forecasting approach based on the 
accurate estimation of indoor temperature to accomplish 
accurate and reliable A/C load forecasting and avoid the 
lack of emergency power reserves during peak hours. 
While there are extensive results for large facilities, there 
are limited results in open literature for suburban residential 
homes. Thus, we implement HEMS in our laboratory and 
provide verification of both the proposed A/C load 
forecasting method and communication architecture 
environment. 

 
 

2. Estimation of Indoor Temperature 
 

2.1 Modified thermodynamics of indoor temperature 
 
As a standard analysis of thermodynamics including a 

residential A/C, the discrete time thermodynamics of 
indoor temperature [7] can be described as follows 
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where ( ), ( )in outT k T k , and ( )ACP k  denote the indoor 
temperature, outdoor temperature, and electricity power 
consumed by the A/C, respectively, and ( )w k  denotes 
white Gaussian noise. ,a b  and c are thermal parameters 
to be estimated. The validity of the standard model was 
verified based on the experimental data sets collected in 
our laboratory, which include the indoor temperature, 
outdoor temperature, and A/C power usage patterns. 

However, the standard thermodynamics could not properly 
model the indoor temperature of our laboratory because the 
impact of the internal thermal noise is simply described by 
the constant scalar c. It is necessary for the model to offer a 
more detailed description of the impact of internal thermal 
noise; thus, we introduce modified thermodynamics as 
follows: 
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where g  and c  are the additional thermal parameters for 
modified thermodynamic model. The main difference 
between the traditional and proposed model is the terms of 
the internal thermal noise. The impact of internal thermal 
noise is expressed by the term ( ( ))inT kg - . The next point 
in the indoor temperature ( 1)inT k +  is influenced by the 
difference between internal thermal noise g  and ( )inT k . 
g  represents the temperature of the internal thermal noise; 
using the modified dynamic in (2), the state-space model 
can be easily derived as 
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where ( )k k inx y T k= = , [ ]( ) ( ) 1 T

k out ACu T k P k= , ( )v k  
denotes the thermometer noise that is white Gaussian, and 
the state-space matrices are represented as 

 
 [ ]1 , , 1.A B Ca c a b cg= - - = =   (4) 

 
Using the least-square (LS) algorithm, the estimation of 

model parameter (4) can be obtained. 
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where Â  and B̂  are estimates of the parameter matrices 
and ¥  is the number of measurements for parameter 
identification. We can validate the accuracy of the model 
using different experimental data sets based on the 
extracted parameter matrices. The indoor temperature can 
be estimated by the state-space model with the extracted 
parameters. 

 
 1
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where ˆkx  is the modified model-based estimate of the 
indoor temperature. The model accuracy can be measured 
by the mean squared prediction error (PE) pe  , which is 
given by 
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The indoor temperature estimation-based modified 
thermodynamic model is evaluated in Section 3. 

 
2.2 Finite memory estimation of the indoor 

temperature 
 
Although the state-space model of modified thermo-

dynamics (3) can offer a more detailed description of 
indoor temperature, a modeling error still exists and may 
cause poor estimation performance. In our previous work 
[31], we proposed a new digital phase-locked loop with 
finite-memory structure called the unbiased finite-memory 
DPLL (UFMDPLL) and showed excellent robustness 
performance against incorrect noise information. Among 
the same line of the idea in [31], we extended the approach 
to the control problem of the indoor temperature and 
proposed a new load forecasting method for smart air 
conditioning by using the unbiased finite-memory estimator. 

Thus, we propose an unbiased finite memory estimator 
(UFME) with considering control input ... in this section to 
mitigate the accumulation of modeling and computational 
errors. We define the horizon size of the UFME as N. On 
the most recent time horizon [ , 1]k N k- - , the finite 
number of control inputs and measurements on the horizon 
[ ; 1]k N k- -  for UFME are constructed as 
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The UFME is proposed based on the state space model 

(6) in the following theorem: 
 
Theorem 1. Given 2N… , the UFME of the indoor 

temperature ˆ f
kx  is given by 
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Proof. The state space model (3) can be rewritten in a 

batch form on the horizon [ , ]k N k-  as follows: 
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(10) can be rewritten as 
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By substituting (13) into (11), we obtain 
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(8) can be written as 
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The expectation is taken on both sides of (16) as 
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Introduce the following Lagrange function: 
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where l  represents the Lagrange multipliers. The 
derivative of (19) with respect to ih  gives 
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By substituting (18) into (21), we obtain 
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From (22), we obtain l  as follows: 
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Finally, by substituting (23) into (21), ih  is obtained. 
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This completes the proof. 
 
Remark 1. It should be noted that H  is independent of 

the noise information and initial state. In other words, 
given N, H  is always a constant matrix even if the noise 
information is uncertain or incorrect. 

Remark 2. The proposed UFME can prevent the 
accumulation of modeling and computational errors 
because it only uses recent finite measurement. The gain 
matrix of the UFME was obtained using the Moore-
Penrose pseudo inverse and Lagrange equation, and it can 
minimize the bad effects caused by modeling and 
computational errors. Thus, the proposed UFME becomes 
an effective approach when there is incorrect noise 
information or numerical errors in a model. 

 
 

3. Experimental Results 
 

3.1 Scenarios 
 
The whole scenario under consideration is shown in Fig. 

1. The provider will determine the DR signal based on the 
estimation of A/C load consumption. The DR signal, which 
consists of the total energy reductions of each household, 
the estimated peak hours, and the electricity price, is 
calculated and transmitted to each household based on this 
information. The HEMS, in each household will provide 
the proper A/C load consumption by scheduling appliance 
operation times considering the electricity bill, the 
reduction in peak demand, and user comfort. This means 
that the HEMS in each individual residence will estimate 
the A/C load consumption based on the estimated indoor 

 
Fig. 1. Message conversion between SEP 2.0 and 

OpenADR 2.0a 
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temperature. Then, each HEMS decides whether to reduce 
the power according to user preference for a trade-off 
between the electricity bill and user comfort. It is assumed 
that the additional incentive for maintaining the pre-
contract DR level is offered to customers to encourage the 
residential customers to participate the DR service. The 
standardization of communication and data format is 
required to stimulate this DR service.  

Remark 3. OpenADR has been developed based on the 
Energy Interoperation (EI), which provides a protocol 
authentication program. OpenADR 2.0 protocol defines the 
profile of a common information exchange between 
demand response providers and their consumers, and it 
describes the basic operation of an upper-layer service [25-
27]. It uses HyperText Transfer Protocol (HTTP). 

Remark 4. SEP 2.0 mainly explains the various services 
related to demand response, which are defined in Demand 
Response and Load Control (DRLC) and the operation of 
the resource center for energy-related devices on the 
premises [28]-[30]. SEP 2.0 protocol located at a top-tier IP 
stack developed by the ZigBee with the HomePlug 
Alliance. It transmits data in eXtensible Mark-up Language 
(XML) format, that is type of demand response message, 
using HTTP based on REpresentation State Transfer 
(REST) architecture by default. 

Remark 5. The demand response system consists of the 
demand response servers, smart appliances, and HEMS. 
Demand response server includes of response service 
providers (e.g. power suppliers and load management 
operaters). The OpenADR 2.0 protocol ensures an 
automated demand response service and it is able to 
accept the role of network operator. It is accomplished by 
applying a pre-determined strategy to the system between 
the service provider and the consumer. Meanwhile, 
OpenADR 2.0 may serve as an external demand response 
server. The SEP 2.0 protocol cannot receive demand 
response messages from the demand response server, 
which is located outside of the home, because it defines 
various operations intended for energy devices in the home. 
Thus, in this paper, we design an automatic demand 
response system that includes OpenADR 2.0 and SEP 2.0. 
Based on OpenADR 2.0, demand response signals are 
transmitted between the server and the HEMS. At home, 
demand response services are performed for smart 
appliances based on SEP 2.0 protocols. Fig. 1 shows the 
message conversion in demand response system. 

 
3.2 Experiment setup and validation 

 
3.2.1 Experiment setup 

 
The experimental setup is presented in this section. Fig. 

2 illustrates the layout of the HEMS installation of the 
proposed indoor temperature and A/C forecast algorithm. 
For the practical validation of the proposed approach, we 
implemented the HEMS with a smart A/C in our laboratory 

and collected experimental measurement sets. The test bed 
is located in the research laboratory at the Department of 
Electrical Engineering at Korea University, and this 35 m2-
test bed is designed to represent the actual living space. Fig. 
3 shows the test bed and its setup environment. The 
LabJack Digit-TL thermostat is located at the center of the 
test bed. Detailed specifications of the equipment used for 
the HEMS are listed in Table 1. The smart AC used in our 
experiment can communicate with MCU via SEP 2.0 
protocols. The MCU included a SEP 2.0 communication unit, 
a control unit for a smart A/C, and an A/C power measuring 
unit. The laptop communicated with the DR server through 
the Open ADR 2.0 standard, and measurement data sets 
were collected every 10 minutes from June to August in 
2014 and 2015 in Korea for the experiment. The data sets 
included A/C power consumption, humidity, indoor 

Table 1. Device configuration 

Laptop 
model processor memory OS 

Lenovo 
ThinkPad E540 

2.2GHz  
Intel i7-4702M Q 4GB Windows7 

32bit 
MCU 

model function communication performance 

ATmega2560 
communication 
with Server and 
A/C, controller 

interface: RS232C 
communication 

level: TTL 

CPU: 8-bit 
AVR Flash: 

256KB 
Smart A/C 

model function voltage current 
Carrier 

CPM-A157T 
GB0 

Air Conditioner 
Dehumidifier 220V 8.1A 

 

 
Fig. 2. Layout of HEMS 

 

 
Fig. 3. Test bed and setup environment of HEMS 



Smart Air Condition Load Forecasting based on Thermal Dynamic Model and Finite Memory Estimation for Peak-energy Distribution 

 564 │ J Electr Eng Technol.2018; 13(2): 559-567 

temperature, and outdoor temperature. Real indoor 
temperature and humidity information were collected 
using a LabJack Digit-TL thermostat, and we used the 
open source of the Korea Meteorological Administration 
to determine the day-ahead outdoor temperature. The 
snapshot of the application program of the HEMS is shown 
in Fig. 4 and the general pattern of the thermodynamic 
model has different characteristics for a typical day and a 
rainy day, which has an irregular pattern. Thus, we 
excluded rainy day data sets in this study to reduce the 
errors in the thermodynamic models. The number of 
observations N for model identification corresponds to 1, 
3, and 7 days of measurement. Among them, 432 points 
(one point every 10 minutes) for three previous days were 
used for the identification of the thermal model parameters 
in this study. Based on this set, we obtained the modified 
thermodynamic model parameters by the least squares 
algorithm. Table 2 shows the model parameters. Using 
the collected parameter set and outdoor temperature, the 
proposed UFME based on Theorem 1 estimates the next-
point indoor temperature. In this study, Q,R, and the 
horizon size N for UFME choose 0.7447; 0.3, and 10 
points, respectively. The simulation and experiment data 
were mainly focused on a two-day period due to the 
limited space of the paper.  

 
3.2.2 Experiment results  

 
The experimental results are presented in this section 

and the performance of the proposed A/C load 
consumption forecasting approach is evaluated. 

 
(a) Indoor temperature estimation 
Fig. 5 shows the estimation of the indoor temperature 

based on the modified model and UFME. The proposed 
UFME, compared to the modified model-based estimation, 
could reduce estimation errors by 62.06%. Thus, the 

proposed UFME leads to a 62.06% improvement in 
estimation accuracy compared with the modified model-
based estimation.  

 
(b) Error accumulation 
The error accumulation during 20 days is shown in Fig. 

6. These results show that the proposed UFME-based 
estimation is more robust against modeling error than the 
modified model-based estimation. After the accurate 
estimation of the indoor temperature, the next-point A/C 
load forecast can be obtained via the estimation information 
and the A/C operating rules. The A/C operating rules are 
listed in Table 3.  

 
(c) A/C load forecasting 
Figs. 7 and 8 show a comparison of A/C load forecasting 

between UFME and the model-based approach. As shown 
in the figures, the UFME-based approach provides 

Table 2. Model parameters 

â  b̂  ĝ  ĉ  [ ](kWh)ACP k  
0.1176 2.0121 27.1269 0.5081 0.3 

 

 
Fig. 4. Snapshot of the application program of HEMS 

Table 3. A/C operating rule based on humidity and 
estimation of indoor temperature 

minimum time of continuous operation 20 minutes 
maximum time of continuous operation 4 hour 

minimum operating time per day 8 hour 
Temperature > 27 & humidity < 70% Turn on 
Temperature > 26 & humidity < 70% Turn on 

 

 
Fig. 5. Real measurement of indoor temperature and its 

estimation (top) and estimation error (bottom) 
 

 
Fig. 6. Accumulated error over 20 days 
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approximately 6.25% more accurate A/C on/off forecasting 
per day compared to the model-based approach. In 
particular, the prediction of A/C on/off based on UFME 
shows 16.67% more accuracy in the peak time (10:00-
15:00). By providing an accurate prediction of A/C load 
consumption, the service provider carries out the operation 
of a correct and reliable smart grid system, and an efficient 
DR reaction can be achieved.  

 
(d) Indoor Temperature and A/C operation 
Fig. 9 shows the indoor temperature and A/C on/off 

action before and after receiving DR reduction information 
(DR level 1: 50% reduction). As shown in Fig. 7, a 50% 
intensive load reduction can be achieved during peak time. 
This study mainly focused on accurate A/C load estimation, 
which is meaningful information for load shifting or 
reducing techniques that seek to offer reliable service. 
AC usage after DR can be integrated into a convex 
optimization framework for optimal AC scheduling, which 

will be the subject of future work. 
 
 

4. Conclusion 
 
This paper proposed a new A/C load forecasting 

approach for the reliable estimation of residential A/C 
load consumption, and it is helpful for energy distribution 
at peak times. Based on the modified thermodynamics of 
indoor temperatures, a new UFME that uses recent finite 
measurements of the receding horizon and the correction 
term with the unbiasedness property is provided to 
estimate indoor temperatures. User patterns, the modified 
thermodynamics of indoor temperature, and the UFME 
were integrated in the HEMS to overcome the difficulties 
of the load forecasting of A/C due to its random nature of 
turning on/off. The proposed A/C load forecasting 
approach provides the accurate estimation of A/C load 
consumption. We implemented the HEMS, which includes 
the communication construction between the DR server 
and HEMS for demonstration purposes in a laboratory 
environment to verify the case study of estimating the 
smart A/C load consumption. The effectiveness of the 
proposed estimation method was validated based on real 
experimental data sets. The proposed A/C load estimation 
approach can be incorporated into the optimization 
problem for optimal A/C scheduling, and the ideas 
provided in this study can be broadened to control other 
thermal appliances, which will be the subject of our future 
work. 
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