• Title/Summary/Keyword: Membrane Resonance

Search Result 156, Processing Time 0.031 seconds

Preparation and Characterization of Block Copolymer Containing Bisphenyl Propane Unit and Nanosilica Composite Membrane for Fuel Cell Electrolyte Application (비스페닐프로판 단위를 갖는 연료전지전해질용 블록공중합체/나노실리카 복합막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.144-149
    • /
    • 2017
  • A proton-conducting bisphenylpropaned sulfonated fluorinated blockcopolymer (BPSFBC) was synthesized. Five kinds of polymer electrolyted composite membranes were preparated by incorporating silica ($SiO_2$) with various weight ratio. And their characteristics were investigated by FT-IR (fourier transform infrared), $^1H-NMR$ ($^1H$ nuclear magnetic resonance), TGA (thermogravimetric analysis), water uptake, FE-SEM (field emission scanning electron microscopes), and ion conductivity properties. The water uptake and ion conductivity were increased until 9 wt% $SiO_2$, and then decreased. The maximum proton conductivity equal to $52mScm^{-1}$ was measured for the BPSFBC/$SiO_2$-9 composite membrane at $90^{\circ}C$ and 100% relative humidity. From the measured results, it is distinct that the manufactured composite membrane BPSFBC/$SiO_2$-9 can be considered as a polymer membrane suitable for a fuel cell electrolyte.

Hydrocephalus due to Membranous Obstruction of Magendie's Foramen

  • Kasapas, Konstantinos;Varthalitis, Dimitrios;Georgakoulias, Nikolaos;Orphanidis, Georgios
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.68-71
    • /
    • 2015
  • We report a case of non communicating hydrocephalus due to membranous obstruction of Magendie's foramen. A 37-year-old woman presented with intracranial hypertension symptoms caused by the occlusion of Magendie's foramen by a membrane probably due to arachnoiditis. As far as the patient's past medical history is concerned, an Epstein-Barr virus infectious mononucleosis was described. Fundoscopic examination revealed bilateral papilledema. Brain magnetic resonance imaging demonstrated a significant ventricular dilatation of all ventricles and turbulent flow of cerebelospinal fluid (CSF) in the fourth ventricle as well as back flow of CSF through the Monro's foramen to the lateral ventricles. The patient underwent a suboccipital craniotomy with C1 laminectomy. An occlusion of Magendie's foramen by a thickened membrane was recognized and it was incised and removed. We confirm the existence of hydrocephalus caused by fourth ventricle outflow obstruction by a membrane. The nature of this rare entity is difficult to demonstrate because of the complex morphology of the fourth ventricle. Treatment with surgical exploration and incision of the thickened membrane proved to be a reliable method of treatment without the necessity of endoscopic third ventriculostomy or catheter placement.

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Endoscopic Treatment of Chronic Subdural Hematoma Combined with Inner Subdural Hygroma

  • Yoon Hwan Park;Kwang-Ryeol Kim;Ki Hong Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.552-561
    • /
    • 2023
  • Objective : A chronic subdural hematoma (CSDH) is a collection of bloody fluid located in the subdural space and encapsulated by neo-membranes. An inner subdural hygroma (ISH) is observed between the inner membrane of a CSDH and the brain surface. We present six cases of CSDH combined with ISH treated via endoscopy. Methods : Between 2011 and 2022, among the 107 patients diagnosed with CSDH in our institute, six patients were identified as presenting with CSDH combined with ISH and were included in this study. Preoperative computerized tomography (CT) and magnetic resonance imaging (MRI) were performed simultaneously, and endoscopic surgery for aspiration of the hematoma was performed in all cases of CSDH combined with ISH. Results : The mean age of patients was 71 years (range, 66 to 79). The patients were all male. In two cases, the ISH was not identified on CT, but was clearly seen on MRI in all patients. The inner membrane of the CSDH was tense and bulging after draining of the CSDH in endoscopic view due to the high pressure of the ISH. After fenestration of the inner membrane of the CSDH and aspiration of the ISH, the membrane was sunken down due to the decreasing pressure of the ISH. There was one recurrence in post-operative 2-month follow up. The symptoms improved in all patients after surgery, and there were no surgery-related complications. Conclusion : CSDH combined with ISH can be diagnosed on imaging, and endoscopic surgery facilitates safe and effective treatment.

Effect of Silicotungstic Acid as Inorganic Filler on the Properties of Anion Exchange Composite Membranes (무기첨가제 규소텅스텐산이 음이온교환 복합막 특성에 미치는 영향)

  • LEE, KYU HA;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • In this study, we synthesized a poly(pheneylene oxide) (PPO)-based organic/inorganic composite membrane having silicotungstic acid (STA) for the development of an anion exchange membrane with excellent ionic conductivity and physicochemical stability. The organic/inorganic composite membranes were prepared by introducing different STA contents (0 wt%, 10 wt%, 30 wt%, and 50 wt%) into the quaternizaed(Q)-PPO matrix. The prepared anion exchange membranes were subjected to structural analysis by proton neclear magnetic resonance and Fourier transform infrared, and thermal behavior of membranes was confirmed by thermogravimetric analysis. Among the prepared composite membranes, the ion conductivity of Q-PPO/STA-50 (40.5 mS cm-1) showed 1.46 times compared to that of the pristine membrane (27.6 mS cm-1). Therefore, these results demonstrated that organic/inorganic composite membranes are promising candidates for application of anion exchange membranes.

Research Method of Fatty Acids Transfer between Phospholipid Model Membranes (인지질 모델막에서의 지방산 이동에 관한 연구 방법)

  • 임병순;김혜경;김을상
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.743-750
    • /
    • 1997
  • Direct measurement of the kinetics of free fatty acid transfer between phospholipid model membrane is technically limited by the rapid nature of the transfer process. Separation of membrane-bound fatty acid by centrifugation has shown that although the equilibrium distribution of free fatty acid is determined by this method, fatty acid transfer occurs too rapidly for accurate kinetic measurements. Recently fluorescence resonance energy transfer(FRET) assay has been developed to examine transfer of fatty acids between membranes. Donor membranes which has fluorescent fatty acid, anthroyloxy fatty acid(AOFA), is mixed with acceptor membranes which has non-interchangeable fluorescent quencher, nitrobenzo-xadiazol(NBD), using stopped flow apparatus. As the fluorescent fatty acids transfer from donor membrane to acceptor membrane, fluorescence intensity would be decreased and the rate and degree of fatty acid transfer can be analyzed. Fatty acid transfer between micelles is more complicated because of bile salt. Therefore in experiments with micelles, fluorescence self quenching assay is used. At high concentrations, a fluorophore tends to quench its own fluorescence causing a reduction in fluorescence intensity. Donor micelles contained self quenching concentrations of fluorophore and acceptor micelles had no fluorophore. Upon mixing of donor and acceptor micelles, the rate of transfer of the fluorophore from the donor to the acceptor was measured by monitoring the release in self quenching when its concentration in donor decreased over time.

  • PDF

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone) (수지상 폴리(알릴렌 이써 설폰)에 도입된 지방족 알킬사슬 연결자길이에 따른 음이온교환막의 특성 연구)

  • KIM, HYUN JIN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.209-218
    • /
    • 2022
  • Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.

Tertiary Structure of PreSl(21-47) of Hepatitis B Virus Studied by NMR Spectroscopy

  • Kyeunghee Yu;Cho, Eun-Wie;Shin, Song-Yub;Kim, Kol-Lyong;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • To design more efficient peptide antagonist against the HBV, preSl(21-47) which carries the HBV receptor binding site for hepatocytes was synthesized and the solution structure of preSl(21-47) was investigated using CD spectroscopy and NMR spectroscopy in membrane-mimicking environments. According to CD spectra, preSl(21-47) has a random structure in aqueous solution, while conformational change was induced by addition of TFE and SDS micelle. Tertiary structures as determined by NMR spectroscopy shows that preSl(21-47) has a very flexible structure even in SDS micelle.

  • PDF

Conformation of Substance P in Neutral Phospholipid Micelles

  • Kim, Seonggeum;Eunjung Bang;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.41-49
    • /
    • 1998
  • A linear undecapeptide, Substance P (SP) is involved in a wide variety of physiological processes such as pain, inflammation, salivation, and hypertension. Tertiary structure of SP in dodecylphosphocholine (DPC) micelles has been investigated by CD, NMR spectroscopy, and DGII calculation. CD spectrum of SP in the presence of 7.5 mM DPC micelles does not show any favorable secondary structure. The tertiary structure determined by NMR spectroscopy and DGII calculation shows that the Phe7-Phr8-Gly9-Leu10 region adopts a turn structure, while the N-terminal region is quite flexible. Both prolines in SP exist preferentially as the trans isoforms and the aromatic ring of Phe7 protrudes outward. Conformation of SP may be restrained by the contact of the Phe7 aromatic ring with the hydrophobic side chains of the DPC micelles and this interaction induces a turn structure. Structure of SP in aqueous solution in the presence of DPC micelles can represent a good model to study the conformation recognized by the receptor near neutral membrane.

  • PDF