Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.1.28

Effect of Silicotungstic Acid as Inorganic Filler on the Properties of Anion Exchange Composite Membranes  

LEE, KYU HA (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
YOO, DONG JIN (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.1, 2022 , pp. 28-37 More about this Journal
Abstract
In this study, we synthesized a poly(pheneylene oxide) (PPO)-based organic/inorganic composite membrane having silicotungstic acid (STA) for the development of an anion exchange membrane with excellent ionic conductivity and physicochemical stability. The organic/inorganic composite membranes were prepared by introducing different STA contents (0 wt%, 10 wt%, 30 wt%, and 50 wt%) into the quaternizaed(Q)-PPO matrix. The prepared anion exchange membranes were subjected to structural analysis by proton neclear magnetic resonance and Fourier transform infrared, and thermal behavior of membranes was confirmed by thermogravimetric analysis. Among the prepared composite membranes, the ion conductivity of Q-PPO/STA-50 (40.5 mS cm-1) showed 1.46 times compared to that of the pristine membrane (27.6 mS cm-1). Therefore, these results demonstrated that organic/inorganic composite membranes are promising candidates for application of anion exchange membranes.
Keywords
Anion exchange composite membrane; Silicotungstic acid; Ion conductivity; Activation energy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. Li and J. B. Baek, "The promise of hydrogen production from alkaline anion exchange membrane electrolyzers", Nano Energy, Vol. 87, 2021, pp. 106162, doi: https://doi.org/10.1016/j.nanoen.2021.106162.   DOI
2 N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Prog. Polym. Sci., Vol. 113, 2020, pp. 101345, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.   DOI
3 K Tammeveski and J. H. Zagal, "Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application", Curr. Opin. Electrochem., Vol. 9, 2018, pp. 207-213, doi: https://doi.org/10.1016/j.coelec.2018.04.001.   DOI
4 K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", J. Membr. Sci., Vol. 434, 2013, pp. 35-43, doi: http://dx.doi.org/10.1016/j.memsci.2013.01.037.   DOI
5 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, J. E. McGrath, "Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., Vol. 212, No. 1-2, 2003, pp. 263-282, doi: https://doi.org/10.1016/S0376-7388(02)00507-0.   DOI
6 R. -A. Becerra-Arciniegas, R. Narducci, G. Erocolani, S. Antonaroli, E. Sgreccia, L. Pasquini, P. Knauh, and M. L. Di Yona, "Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammoium groups: Influence of the functionalized route", Polymer, Vol. 185, 2019, pp. 121931, doi: https://doi.org/10.1016/j.polymer.2019.121931.   DOI
7 C. Vogel and J. M. Haack, "Preparation of ion-exchange materials and membranes", Desalination, Vol. 342, 2014, pp. 156-174, doi: https://doi.org/10.1016/j.desal.2013.12.039.   DOI
8 Q. Wang, L. Huang, J. Zheng, Q. Zhang, G. Qin, S. Li, and S. Zhang, "Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability", J. Membr. Sci., Vol. 643, 2022, pp. 120008, doi: https://doi.org/10.1016/j.memsci.2021.120008.   DOI
9 A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo. "Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells", Compos. Part B-Eng.. Vol. 155, 2018, pp. 272-281, doi: https://doi.org/10.1016/j.compositesb.2018.08.016.   DOI
10 B. Liu, Y. Duan, T. Li, J. Li, H . Zhang, and C. Zhao, "Nanostructured anion exchange membranes based on poly (arylene piperidinium) with bis-cation strings for diffusion dialysis in acid recovery", Sep. Purif. Technol., Vol. 282, 2022, pp. 120032, doi: https://doi.org/10.1016/j.seppur.2021.120032.   DOI
11 T. Huang, J. Zhang, Y. Pei, X. Liu, J. Xue, H. Jiang, X. Qiu, Y. Yin, H. Wu, Z. Jiang, and M. D. Guiver, "Mechanically robust microporous anion exchange membranes with efficient anion conduction for fuel cells", Chem. Eng. J., Vol. 418, 2021, pp. 129311, doi: https://doi.org/10.1016/j.cej.2021.129311.   DOI
12 J. E. Park, J. Kim, J. Han, K. Kim, S. Park, S. Kim, H. S. Park, Y. H. Cho, J. C. Lee, and Y. E. Sung, "High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer", J. Membr. Sci., Vol. 620, 2021, pp. 118871, doi: https://doi.org/10.1016/j.memsci.2020.118871.   DOI
13 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustain. Chem. Eng., Vol. 7, No. 24. 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.   DOI
14 S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans. Korean Hydrogen New Energy Soc., Vol. 29, No. 5, 2018, pp. 458-465, doi: https://doi.org/10.7316/KHNES.2018.29.5.458.   DOI
15 A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. J. Paik, "Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: synthesis, characterization and microbial fuel cell performance", Int. J. Hydrog. Energy, Vol. 45, No. 51, 2020, pp. 27346-27358, doi: https://doi.org/10.1016/j.ijhydene.2020.07.093.   DOI
16 Y. Li, J. Sniekers, J. C . M alaquias, C . V. G oethem , K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", J. Power Sources, Vol. 378, 2018, pp. 338-344, doi: https://doi.org/10.1016/j.jpowsour.2017.12.049.   DOI
17 Q. Chen, J. Luo, J. Liao, C. Zhu, J. Li, J. Xu, Y. Xu, H, Ruan, and J. Shen, "Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance", J. Membr. Sci., Vol. 641, 2022, pp. 119860, doi: https://doi.org/10.1016/j.memsci.2021.119860.   DOI
18 Z. Li, R. Yu, C. Liu, J. Zheng, J. Guo, T. A. Sherazi, S. Li, and S. Zhang, "Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction", Polymer, Vol. 222, 2021, pp. 123639, doi: https://doi.org/10.1016/j.polymer.2021.123639.   DOI
19 L. Wu, T. Xu, and W. Yang, "Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination", J. Membr. Sci., Vol. 286, No. 1-2, 2006, pp. 185-192, doi: https://doi.org/10.1016/j.memsci.2006.09.035.   DOI
20 K. Shen, Z. Zhang, H. Zhang, J. Pang, and Z. Jiang, "Poly (arylene ehter ketone) carrying hyperquaternized pendants: preparation, stability and conductivity", J. Power Sources, Vol. 287, 2015, pp. 439-447, doi: https://doi.org/10.1016/j.jpowsour.2015.04.017.   DOI
21 P. Deivanayagam, A. R. Ramamoorthy, and S. N. Jaisankar, "Synthesis and charaterization of sulfonated poly(arylene ehter sulfone)/silicotungstic acid composite membranes for fuel cells", Polym. J., Vol. 45, 2013, pp: 166-172, doi: https://doi.org/10.1038/pj.2012.102.   DOI
22 L. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, and G. Zhang, "Side-chain manipulation of poly(phenylene oxide) based anion exchange membrane: alkoxyl extender integrated with flexible spacer", J. Membr. Sci., Vol. 624, 2021, pp. 119088, doi: https://doi.org/10.1016/j.memsci.2021.119088.   DOI
23 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.   DOI
24 K. H. Lee, J. Y. Chu, A. R. Kim, H. G. Kim, and D. J. Yoo, "Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells", J. Membr. Sci., Vol. 634, 2021, pp. 119435, doi: https://doi.org/10.1016/j.memsci.2021.119435.   DOI
25 Y. Lu, X. Pan, N. Li, Z. Hu, and S. Chen, "Improved performance of quaternized poly(arylene ehter ketone)s/graphitic carbon nitride nanosheets composite anion exchange membrane for fuel cell applications", Appl. Surf. Sci., Vol. 503, 2020, pp. 144071, doi: https://doi.org/10.1016/j.apsusc.2019.144071.   DOI
26 J. Li, S. Wang, F. Liu, H. Chen, X. Wang, T. Mao, D. Wang, G. Liu, and Z. Wang, "Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity", J. Membr. Sci., Vol. 591, 2019, pp. 117306, doi: https://doi.org/10.1016/j.memsci.2019.117306.   DOI
27 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.   DOI
28 J. Pan, B. Wei, H. Xie, J. Feng, S. Liao, X. Li, and Y. Yu, "Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination", Sep. Purif. Technol., Vol. 265, 2021, pp. 118526, doi: https://doi.org/10.1016/j.seppur.2021.118526.   DOI
29 K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Highly sulfonated poly(Arylene biphenylsulfone ketone) block copolymers prepared via post-sulfonation for proton conducting electrolyte membranes", Bull. Korean Chem. Soc., Vol. 34, No. 6, 2013, pp. 1763-1770, doi: https://doi.org/10.5012/bkcs.2013.34.6.1763.   DOI
30 C. Hu, X. Deng, X. Dong, Y. Hong, Q. Zhang, and Q. Liu, "Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes", J. Membr. Sci., , Vol. 619, 2021, pp. 118806, doi: https://doi.org/10.1016/j.memsci.2020.118806.   DOI
31 M. S. Cha, J. Y. Lee, T. Kim, H. Y. Jeong, H. Y. Shin, S. Oh, and Y. T. Hong, "Preparation and charaterization of crosslinked anion exchange membrane (AEM) materials with poly (phenylene ether)-based short hydrophilic block for use in electrochemical applications", J. Membr. Sci., Vol. 530, 2017, pp. 73-83, doi: https://doi.org/10.1016/j.memsci.2017.02.015.   DOI
32 Z. Y. Zhu, W. W. Gou, J. H. Chen, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Crosslinked naphthalene-based triblock polymer anion exchange membranes for fuel cells", J. Membr. Sci., Vol. 636, 2021, pp. 119569, doi: https://doi.org/10.1016/j.memsci.2021.119569.   DOI
33 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.   DOI
34 M. Kumari, J. C. Douglin, and D. R. Dekel, "Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes", J. Membr. Sci., Vol. 626, 2021, pp. 119167, doi: https://doi.org/10.1016/j.memsci.2021.119167.   DOI
35 Y. Hu, B. Wang, X. Li, D. Chen, and W. Zhang, "Densely quaternized poly(arylene ehter)s with distinct phase separation for highly anion-conductive membranes", J. Power Sources, Vol. 387, 2018, pp. 33-42, doi: https://doi.org/10.1016/j.jpowsour.2018.03.060.   DOI
36 M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Sci. Total Environ., Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.   DOI
37 B. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and charaterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.   DOI
38 J. Pan, H. Zhu, H. Cao, B. Wang, J Zhao, Z. Sun, and F. Yan, "Flexible cationinc side chains for enhancing the hydroxide ion conductivity of olefinic-type copolymer-based anion exchange membranes: An experimental and theoretical study", J. Membr. Sci., Vol. 620, 2021, pp. 118794, doi: https://doi.org/10.1016/j.memsci.2020.118794.   DOI
39 C. G. Arges, J. Parrondo, G. Johnson, A. Nadhan, and V. Ramani, "Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes", J. Mater. Chem., Vol. 22, 2012, pp. 3733-3744, doi: https://doi.org/10.1039/C2JM14898F.   DOI
40 Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H. Zhang, "A novel anion exchange membrane based on poly(2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Int. J. Hydrog. Energy, Vol. 46, No. 47, 2021, pp. 24328-24338, doi: https://doi.org/10.1016/j.ijhydene.2021.05.004.   DOI
41 R. Hariprasad, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells", J. Dispersion Sci. Technol. Vol. 42, 2019, pp. 33-45, doi: https://doi.org/10.1080/01932691.2019.1660672.   DOI
42 Z. Feng, P. O. Esteban, G . Gupta, D. A. Fulton, and M. Mamlouk, "Highly conductive partially cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane and ionomer for water electrolysis", Int. J. Hydrog. Energy, Vol. 46, No. 75, 2021, pp. 37137-37151, doi: https://doi.org/10.1016/j.ijhydene.2021.09.014.   DOI
43 Y. Bai, Y. Yuan, L. Miao, and C. Lu, "Functionalized rGO as covalent crossliinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity", J. Membr. Sci., Vol. 570-571, 2019, pp. 481-493, doi: https://doi.org/10.1016/j.memsci.2018.10.030.   DOI
44 J. Zhou, J. Chen, A. Ding, Y. Nie, Z. Li, C. Shen, and S. Gao, "Synthesis and properties of novel crosslinking anion exchange membranes based on quaternary poly(fluorene-piperidine)", Colloid Interface Sci. Commun., Vol. 46, 2022, pp. 100584, doi: https://doi.org/10.1016/j.colcom.2022.100584.   DOI
45 Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H Zhang, "A novel anion exchange membrane based on poly(2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Int. J. Hydrog. Energy, Vol. 46 No. 47, 2021, pp. 24328-24338, doi: http://doi.org/10.1016/j.ijhydene.2021.05.004.   DOI
46 A. R. Kim, "Synthesis and charagerization of fluorinated polybenzimidazole proton exchange membranes for fuel cell", Trans. Korean Hydrogen New Energy Soc,, Vol. 28, No. 1, 2017, pp. 24-29, doi: https://doi.org/10.7316/KHNES.2017.28.1.24.   DOI
47 C. Lin, X. Liu, Q. Yang, H. Wu, F. Liu, Q. Zhang, A. Zhu, and Q. Liu, "Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chin-type polymer AEMs", J. Membr. Sci., Vol. 585, 2019, pp. 90-98, doi: https://doi.org/10.1016/j.memsci.2019.04.066.   DOI
48 K. Zhang, S. Gong, B. Zhao, Y. Liu, N, Qaisrani, L, Li, F. Zhang, and G. He, "Bent-twisted block copolymer anion exchange membrae with improved conductivity", J. Membr. Sci., Vol. 550, 2018, pp. 59-71, doi: https://doi.org/10.1016/j.memsci.2017.12.044.   DOI
49 L. Lu, G. Dai, J. Lee, and H. G. Lee, "Effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in AEM system", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 5, 2021, pp. 285-292, doi: https://doi.org/10.7316/KHNES.2021.32.5.285.   DOI
50 S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.   DOI
51 N. Ye, D. Zhang, Y. Yang, R. Wan, X. Peng, S. Chen, Q. Zhan, R. He, "Radical inhibitors assisted alkali-resisting anion exchange membranes based on poly(4-vinylbenzyl chloride-styrene)", Solid State Ion., Vol. 362, 2021, pp. 115582, doi: https://doi.org/10.1016/j.ssi.2021.115582.   DOI
52 G. Peng, C. Zhu, J. Liao, X. Gao, L. Hao, A. Sotto, and J. Shen, "A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination", Polymer, Vol. 218, 2021, pp. 123508, doi: https://doi.org/10.1016/j.polymer.2021.123508.   DOI
53 Z. Liu, L. Bai, S. Miao, C. Li, J. Pan, Y. Jin, D. Chu, X. Chu, and L. Liu, "Structure-property relationship of poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums", J. Membr. Sci., Vol. 638, 2021, pp. 119693, doi: http://doi.org/10.1016/j.memsci.2021.119693.   DOI
54 J, Chen, M. Guan, K. Li, and S. Tang, "High-performance COF-based composite anion exchange membrane sandwiched by GO layers for alkaline H2/O2 fuel cell application", J. Ind. Eng. Chem., Vol. 104, 2021, pp. 136-145, doi: https://doi.org/10.1016/j.jiec.2021.08.016.   DOI