Browse > Article
http://dx.doi.org/10.7316/KHNES.2017.28.2.144

Preparation and Characterization of Block Copolymer Containing Bisphenyl Propane Unit and Nanosilica Composite Membrane for Fuel Cell Electrolyte Application  

KIM, AE RHAN (R&D Center for CANUTECH)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.28, no.2, 2017 , pp. 144-149 More about this Journal
Abstract
A proton-conducting bisphenylpropaned sulfonated fluorinated blockcopolymer (BPSFBC) was synthesized. Five kinds of polymer electrolyted composite membranes were preparated by incorporating silica ($SiO_2$) with various weight ratio. And their characteristics were investigated by FT-IR (fourier transform infrared), $^1H-NMR$ ($^1H$ nuclear magnetic resonance), TGA (thermogravimetric analysis), water uptake, FE-SEM (field emission scanning electron microscopes), and ion conductivity properties. The water uptake and ion conductivity were increased until 9 wt% $SiO_2$, and then decreased. The maximum proton conductivity equal to $52mScm^{-1}$ was measured for the BPSFBC/$SiO_2$-9 composite membrane at $90^{\circ}C$ and 100% relative humidity. From the measured results, it is distinct that the manufactured composite membrane BPSFBC/$SiO_2$-9 can be considered as a polymer membrane suitable for a fuel cell electrolyte.
Keywords
PEMFC; Silica($SiO_2$); Compositemembrane; Ion conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 4349-4365.   DOI
2 Y. Chikasige, Y. Chikyu, K. Miyatake, and M. Watanabe, "Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications", Macromolecules, Vol. 38, 2005, pp. 7121-7126.   DOI
3 R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and G. L. Nelson, "Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes", J. Electrochem. Soc., Vol. 147, 2000, pp. 1677-1681.   DOI
4 G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecualr transportation of the poly vinylidene fluoride-hexafluoropropylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", J. Power Sources, Vol. 195, 2010, pp. 5922-5928.   DOI
5 M. K. Song, Y. T. Kim, J. M. Fenton, H. R. Kunz, and H. W. Rhee, "Chemically-modified nafion/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells", J. Power Sources, Vol. 117, 2003, pp. 14-21.   DOI
6 Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, "Sulfonated and crosslinked polyphos phazene-based proton-exchange membranes", J. Membr. Sci., Vol. 154, 1999, pp. 175-181.   DOI
7 N. Cornet, G. Beaudoing, and G. Gebel, "Influence of the structure of sulfonated polyimide membranes on transport properties", Sep. Purif. Technol., Vol. 22, 2001, pp. 681-687.
8 M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., Vol. 234, 2004, pp. 75-81.   DOI
9 Y. Gao, G. P. Robertson, M. D. Guiver, X. G. Jian, S. D. Mikhailenko, K. P. Wang, and S. Kaliaguine, "Sulfonation of poly (phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials", J. Membr. Sci., Vol. 227, 2003, pp. 39-50.   DOI
10 Y. Gao, G. P. Robertson, M. D. Guiver, and X. Jian, "Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials", J. Polym. Sci., Part A, Gen. Pap., Vol. 41, 2003, pp. 497-507.   DOI
11 G. Xiao, G. Sun, D. Yan, P. Zhu, and P. Tao, "Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization", Polymer, Vol. 43, 2002, pp. 5335-5339.   DOI
12 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., Vol. 197, 2002, pp. 231-242.   DOI
13 M. A. Smit, A. L. Ocampo, M. A. Espinosa-Medina, and P. J. Sebastian, "A modified nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell", J. Power Sources, Vol. 124 , 2003, pp. 59-64.   DOI
14 D. Bikiaris, V. Karavelidis, and G. Karayannidis, "A new approach to prepare poly(ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP", Macromol. Rapid Commun., Vol. 27, 2006, pp. 1199-1205.   DOI
15 H. Dong, P. Ye, M. Zhong, J. Pietrasik, R. Drumright, and K. Matyjaszewski, "Superhydrophilic surfaces via polymer-SiO2 nanocomposites", Langmuir, Vol. 26, No. 19, 2010, pp. 15567-15573.   DOI
16 I. Honma, S. Nomura, and H. Nakajima, "Protonic conducting organic/inorganic nano composites for polymer electrolyte membrane", J. Membr. Sci., Vol. 185, No. 1, 2001, pp. 83-94.   DOI
17 J. T Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, "Nanocomposite polymer electrolytes containing silica nano particles: comparison between poly(ethylene glycol) and poly(ethylene oxide) dimethyl ether", J. Appl. Polym. Sci., Vol. 106, 2007, pp. 4083-4090.   DOI