Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.3.209

A Study on the Characteristics of Anion Exchange Membrane According to Aliphatic Alkyl Chain Spacer Length Introduced into Branched Poly (Arylene Ether Sulfone)  

KIM, HYUN JIN (Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
YOO, DONG JIN (Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.3, 2022 , pp. 209-218 More about this Journal
Abstract
Recently, research on the development of anion exchange membranes (AEMs) has received considerable attention from the scientific community around the world. Here, we fabricated a series of AEMs with branched structures with different alkyl spacers and conducted comparative evaluations. The introduction of these branched structures is an attempt to overcome the low ionic conductivity and stability problems that AEMs are currently facing. To this end, branched polymers with different spacer lengths were synthesized and properties of each membrane prepared according to the branched structure were compared. The chemical structure of the polymer was investigated by proton nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography, and the thermal properties were investigated using thermogravimetric analysis. The branched anion exchange membrane with (CH2)3 and (CH2)6 spacers exhibited ionic conductivities of 8.9 mS cm-1 and 22 mS cm-1 at 90℃, respectively. This means that the length of the spacer affects the ionic conductivity. Therefore, this study showing the effect of the spacer length on the ionic conductivity of the membrane in the polymer structure constituting the ion exchange membrane is judged to be very useful for future application studies of AEM fuel cells.
Keywords
Fuel cell; Anion exchange membrane; Branched structure; Spacer; Ion conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Li, K. Wang, D. Liu, L. Lin, and J. Pang, "Poly(arylene ether ketone) with tetra quaternary ammonium carbazole derivative pendant for anion exchange membrane", Polymer, Vol. 195, 2020, pp. 122456, doi: https://doi.org/10.1016/j.polymer.2020.122456.   DOI
2 J. S. Olsson, T. H. Pham, and P. Jannasch, "Tuning poly(arylene piperidinium) anionexchange membranes by copolymerization, partial quaternization and crosslinking", Journal of Membrane Science. Vol. 578, 2019, pp. 183-195, doi: https://doi.org/10.1016/j.memsci.2019.01.036.   DOI
3 A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, Vol. 49, No. 9, 2016, pp. 3361-3372, doi: https://doi.org/10.1021/acs.macromol.5b02550.   DOI
4 S. Gahlot and V. Kulshrestha, "Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM", ACS Appl. Mater. Interfaces, Vol. 7, No. 1, 2015, pp. 264-272, doi: https://doi.org/10.1021/am506033c.   DOI
5 D. Liu, M. Xu, M. Fang, J. Chen, and L. Wang, "Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes", J. Mater. Chem. A, Vol. 6, No. 23, 2018, pp. 10879, doi: https://doi.org/10.1039/C8TA02115E.   DOI
6 K. D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angewandte Chemie, Vol. 21, No. 3, 1982, pp. 208-209, doi: https://doi.org/10.1002/anie.198202082.   DOI
7 F. Liu, S. Wang, J. Li, X. Wang, Z. Yong, Y. Cui, D. Liang, and Z. Wang, "Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells", Journal of Power Sources, Vol. 515, 2021, pp. 230637, doi: https://doi.org/10.1016/j.jpowsour.2021.230637.   DOI
8 H. Y. Son, J. S. Han, and S. S. Yu, "Development of a multi-physics model of polymer electrolyte membrane muel cell using aspen custom modeler", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 6, 2021, pp. 489-496, doi: https://doi.org/10.7316/KHNES.2021.32.6.489.   DOI
9 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6FBPA and perfluorobiphenylene units", Int. J. Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.   DOI
10 H. Wang, J. Zhang, X. Ning, M. Tian, Y. Long, and S. Ramakrishna, "Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 46, No. 49, 2021, pp. 25225-25251, doi: https://doi.org/10.1016/j.ijhydene.2021.05.048.   DOI
11 G. Gupta, S. Sharma, and P. M. Mendes "Nafion-stabilised bimetallic Pt-Cr nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)", RCS Advances, Vol. 6, No. 86, 2016, pp. 82635-82643, doi: https://doi.org/10.1039/C6RA16025E.   DOI
12 B. H. Oh, A. R. Kim, and D. J. Yoo, "Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4281-4292, doi: https://doi.org/10.1016/j.ijhydene.2018.12.177.   DOI
13 S. K. Ryu, M. Vinothkannan, A. R. Kim, and D. J. Yoo, "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120-160 ℃'', Energy, Vol. 238, 2022, pp. 121791, doi: https://doi.org/10.1016/j.energy.2021.121791.   DOI
14 W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, "Durability challenges of anion exchange membrane fuel cells", Energy & Environmental Science, Vol. 13, No. 9, 2020, pp. 2805-2838, doi: https://doi.org/10.1039/D0EE01133A.   DOI
15 Q. Ge, X. Liang, L. Ding, J. Hou, J. Miao, B. Wu, Z. Yang, and T. Xu, "Guiding the selfassembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells", Journal of Membrane Science, Vol. 573, 2019, pp. 595-601, doi: https://doi.org/10.1016/j.memsci.2018.12.049.   DOI
16 A. Sannigrahi, S. Takamura, and P. Jannasch, "Block copolymers combining semifluorinated poly(arylene ether) and sulfonated poly(arylene ether sulfone) segments for proton exchange membranes", Int. J. Hydrogen Energy, Vol. 39, No. 28, 2014, pp. 15718-15727, doi: https://doi.org/10.1016/j.ijhydene.2014.07.155.   DOI
17 P. G. Santori, F. D. Speck, S. Cherevko, H. A. Firousjaie, X. Peng, W. E. Mustain, and F. Jaouen, "High performance FeNC and Mn-oxide/FeNC layers for AEMFC cathodes", J. Electrochem. Soc., Vol. 167, No. 13, 2020, pp. 134505, doi: https://doi.org/10.1149/1945-7111/ABB7E0.   DOI
18 H. A. Firouzjaie and W. E. Mustain, "Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells", ACS Catal., Vol. 10, No. 1, 2020, pp. 225-234, doi: https://doi.org/10.1021/acscatal.9b03892.   DOI
19 F. Xu, Y. Su, and B. Lin, "Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation", Frontiers in Materials, Vol. 7, No. 4, 2020, pp. 1-7, doi: https://doi.org/10.3389/fmats.2020.00004.   DOI
20 Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S. P. Feng, J. Qu, and P. K. Chu, "Development and application of fuel cells in the automobile industry", Journal of Energy Storage, Vol. 42, 2021, pp. 103124, doi: https://doi.org/10.1016/j.est.2021.103124.   DOI
21 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", Journal of Membrane Science, Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.   DOI
22 J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", Journal of Membrane Science, Vol. 581, 2019, pp. 82-92, doi: https://doi.org/10.1016/j.memsci.2019.03.046.   DOI
23 G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: a review", Journal of Membrane Science, Vol. 377, No. 1-2, 2011, pp. 1-35, doi: https://doi.org/10.1016/j.memsci.2011.04.043.   DOI
24 A. R. Kim, M. Vinothkannan, S. Ramakrishnan, B. H. Park, M. K. Han, and D. J. Yoo, "Enhanced electrochemical performance and long-term durability of composite membranes through a binary interface with sulfonated unzipped graphite nanofibers for polymer electrolyte fuel cells operating under low relative humidity", Appl. Surf. Sci., Vol. 593, 2022, pp. 153407, doi: https://doi.org/10.1016/j.apsusc.2022. 153407.   DOI
25 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Graphene-mediated organicinorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes", Composities Part B, Vol. 164, 2019, pp. 324-332, doi: https://doi.org/10.1016/j.compositesb.2018.11.084.   DOI
26 D. R. Dekel, "Review of cell performance in anion exchange membrane fuel cells", J. Power Sources, Vol. 375, 2018, pp. 158-169, doi: https://doi.org/10.1016/j.jpowsour.2017.07.117.   DOI
27 C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, and Q. L. Liu, "Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells", J. Mater. Chem. A, Vol. 4, No. 36, 2016, pp. 13938-13948, doi: https://doi.org/10.1039/C6TA05090E.   DOI
28 X. L. Gao, Q. Yang, H. Y. Wu, Q. H. Sun, Z. Y. Zhu, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Orderly branched anion exchange membranes bearing long flexible multi-cation side chain for alkaline fuel cells", Journal of Membrane Science, Vol. 589, 2019, pp. 117247, doi: https://doi.org/10.1016/j.memsci.2019.117247.   DOI
29 J. Sang, L. Yang, Z. Li, F. Wang, Z. Wang, and H. Zhu, "Comb-shaped SEBS-based anion exchange membranes with obvious microphase separation morphology", Eelctrochimica Acta, Vol. 403, 2022, pp. 139500, doi: https://doi.org/10.1016/j.electacta.2021.139500.   DOI
30 H. S. Dang and P. Jannasch, "Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes", Macromolecules, Vol. 48, No. 16, 2015, pp. 5742-5751, doi: https://doi.org/10.1021/acs.macromol.5b01302.   DOI
31 E. N. Hu, C. X. Lin, F. H. Liu, X. Q. Wang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells", Journal of Membrane Science, Vol. 550, 2018, pp. 254-265, doi: https://doi.org/10.1016/j.memsci.2018.01.010.   DOI
32 X. Gong, X. Yan, T. Li, X. Wu, W. Chen, S. Huang, Y. Wu, D. Zhen, and G. He, "Design of pendent imidazolium side chain with flexible ether-containing spacer for alkaline anion exchange membrane", Journal of Membrane Science, Vol. 523, 2017, pp. 216-224, doi: https://doi.org/10.1016/j.memsci.2016.09.050.   DOI
33 M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, "Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15482-15493, doi: https://doi.org/10.1016/j.ijhydene.2019.04.172.   DOI
34 X. Q. Wang, C. X. Lin, F. H. Liu, L. Li, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells", J. Mater. Chem. A, Vol. 6, No. 26, 2018, pp. 12455-12465, doi: https://doi.org/10.1039/C8TA03437K.   DOI
35 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy Res., Vol. 43, No. 10, 2019, pp. 5333-5345, doi: https://doi.org/10.1002/er.4610.   DOI
36 K. Wang, Q. Wu, X. Yan, J. Liu, L. Gao, L. Hu, N. Zhang, Y. Pan, W. Zheng, and G. He, "Branched poly(ether ether ketone) based anion exchange membrane for H2/O2 fuel cell", Int. J. Hydrogen Energy, Vol. 44, No. 42, 2019, pp. 23750-23761, doi: https://doi.org/10.1016/j.ijhydene.2019.07.080.   DOI
37 A. H. N. Rao, S. Y. Nam, and T. H. Kim, "Combshaped alkyl imidazolium-functionalized poly(arylene ether sulfone)s as high performance anionexchange membranes", Journal of Materials Chemistry A, Vol. 3, No. 16, 2015, pp. 8571-8580, doi: https://doi.org/10.1039/C5TA01123J.   DOI
38 K. Wang, Z. Zhang, S. Li, H. Zhang, N. Yue, J. Pang, and Z. Jiang, "Side-chain-type anion exchange membranes based on poly(arylene ether sulfone)s containing high-density quaternary ammonium groups", ACS Appl. Mater. Interfaces, Vol. 13, No. 20, 2021, pp. 23547-23557, doi: https://doi.org/10.1021/acsami.1c00889.   DOI
39 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2011, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.   DOI
40 Y. Xu, N. Ye, D. Zhang, Y. Yang, J. Yang, and R. He, "Imidazolium functionalized poly(aryl ether ketone) anion exchange membranes having star main chains or side chains", Renewable Energy, Vol. 127, 2018, pp. 910-919, doi: https://doi.org/10.1016/j.renene.2018.04.077.   DOI
41 A. N. Lai, P. C. Hu, J. W. Zheng, S. F. Zhou, L. Zhang, "Fluorene-containing poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes", Int. J. Hydrogen Energy, Vol. 44, No. 44, 2019, pp. 24256-24266, doi: https://doi.org/10.1016/j.ijhydene.2019.07.134.   DOI
42 M. Fang, D. Liu, S. Neelakandan, M. Xu, D. Liu, and L. Wang, "Sidechain effects on the properties of highly branched imidazoliumfunctionalized copolymer anion exchange membranes", Applied Surface Science, Vol. 493, 2019, pp. 1306-1316, doi: https://doi.org/10.1016/j.apsusc.2019.07.059.   DOI
43 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane", Journal of Membrane Science, Vol. 650, 2022, pp. 120384, doi: https://doi.org/10.1016/j.memsci.2022.120384.   DOI