• Title/Summary/Keyword: Megasonic

Search Result 30, Processing Time 0.026 seconds

A Study on tole Improvement of the Slurry Dispersibility in CMP (CMP 슬러리의 분산성 향상에 관한 연구)

  • Cho, Sung-Hwan;Kim, Hyoung-Jae;Kim, Ho-Youn;Kim, Heon-Deok;Seo, Kyoung-Jun;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1535-1540
    • /
    • 2001
  • This study presents the possibility of scratch reduction on wafer in CMP by applying the ultrasonic and megasonic energy into the slurry which might contain large abrasive particles. Experiments were conducted to verify the dispersion ability of agglomerated particles by applying ultrasonic, megasonic waves and analyze the particle distribution of used slurry in case, of sonic energy assisted or none. And the dispersion stability of megasonic waves was investigated through the experiment of stability of the dispersed slurry, Finally, to confirm that the distribution of particles in slurry by ultrasonic waves was actually related to scratches on wafer when CMP was done, tungsten blanket wafer was processed, by CMP to compare and investigate scratches on wafer.

A Study on Acoustic Pressure Characteristics of Spot Spray Type Megasonic for Semiconductor Cleaning (반도체 세정용 Spot Spray Type 메가소닉의 음압특성에 관한 연구)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu;Woo, Jeong-Ju;Kim, Chang-Dae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, to analyze characteristics of acoustic pressure for spot spray type megasonic, FEM analysis was performed for variable parameters based on the structure of commercial one. and 2 models of transmitter were designed and fabricated, and then acoustic pressure distribution(APD) of the transmitter was measured and compared to the commercial. The results of this experiment show that maximum acoustic pressure of model 1 was higher to 1.6 times compared to the commercial, and model 2 was higher to 1.23 times. Through the course of this study, design technology of transmitter has been developed by means of FEM analysis and experiment for characteristics of acoustic pressure. Also, it is expected to be useful in the development of high power spray type megasonic that is necessary with advance in semiconductor technology.

Development of a 1 MHz Megasonic for a Bare Wafer Cleaning (Bare Wafer 세정용 1 MHz 급 메가소닉 개발)

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.17-23
    • /
    • 2023
  • In semiconductor manufacturing processes, a cleaning process is important that can remove sub-micron particles. Conventional wet cleaning methods using chemical have limits in removing nano-particles. Thus, physical forces of a mechanical vibration up to 1 MHz frequency, was tried to aid in detaching them from the substrates. In this article, we developed a 1 MHz quartz megasonic for a bare wafer cleaning using finite element analysis. At first, a 1 MHz megasonic prototype was manufactured. Using the results, a main product which can improve a particle removal performance, was analyzed and designed. The maximum impedance frequency was 992 kHz, which agreed well with the experimental value of 986 kHz (0.6% error). Acoustic pressure distributions were measured, and the result showed that maximum / average was 400.0~432.4%, and standard deviation / average was 46.4~47.3%. Finally, submicron particles were deposited and cleaned for the assessment of the system performance. As a result, the particle removal efficiency (PRE) was proved to be 92% with 11 W power. Reflecting these results, the developed product might be used in the semiconductor cleaning process.

  • PDF

Study of T Type Waveguide in Single Wafer Megasonic Cleaning for Post CMP (T형의 waveguide를 이용한 Post CMP용 메가소닉 세정장치에 대한 연구)

  • Kim, Tae-Gon;Lee, Yang-Lae;Lim, Eui-Su;Kang, Kook-Jin;Kim, Hyun-Se;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.364-365
    • /
    • 2006
  • Transverse some wave was generated by T type waveguide for single wafer cleaning application T type megasonic waveguide was analyzed by acoustic pressure measurements and particle removal efficiency. Compared to conventional longitudinal waves, not like longitudinal waves, transverse waves showed changes of direction and phase which increased the cleaning efficiency.

  • PDF

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

Development of a Far Field type Megasonic for Nano Particle Removing (나노입자 제거용 Far Field 메가소닉 개발)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.