• Title/Summary/Keyword: Medical bigdata

Search Result 57, Processing Time 0.023 seconds

A Study on Practical Classes for Healthcare Administration Education Program Using Health and Medical Big Data (보건의료 빅데이터를 활용한 보건행정 교육프로그램 실무수업에 관한 고찰)

  • Ok-Yul Yang;Yeon-Hee Lee
    • Journal of the Health Care and Life Science
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • This study is a study on the possibility of using big data-related education programs in health and medical administration-related departments using health and medical big data. This paper intends to examine the health and medical big data from five perspectives. 1st, in addition to the aforementioned 'Health and Medical Big Data Open System', I would like to examine the characteristics and application technologies of public big data disclosed by 'Korea Welfare Panel', 'Public Big Data', 'Seoul City Big Data', 'Statistical Office Big Data', etc. 2nd, it is intended to examine the appropriateness of whether the applicable health and medical big data can be used as living data in regular subjects of health and medical administration and health information related departments of junior colleges. 3rd, we want to select the most appropriate tool for classroom lectures using existing statistical processing packages and programming languages. Fourth, finally, by using verified health and medical big data and appropriate tools, we want to test the possibility of expressing graphs, etc. in class and the steps from writing a report. 4th, I would like to describe the relative advantages of R language that can satisfy portability, installability, cost effectiveness, compatibility, and big data processing potential.

Building Linked Big Data for Stroke in Korea: Linkage of Stroke Registry and National Health Insurance Claims Data

  • Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.343.1-343.8
    • /
    • 2018
  • Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.

Genetic diversity of Plasmodium falciparum erythrocyte membrane protein 1 in field isolates from central Myanmar

  • Sylvatrie-Danne Dinzouna-Boutamba;Sanghyun Lee;Zin Moon;Dong-Il Chung;Yeonchul Hong;Moe Kyaw Myint;Haung Naw;Byoung-Kuk Na;Youn-Kyoung Goo
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var multigene family, is a highly polymorphic antigen that plays a crucial role in the pathology of malaria. The contribution of the genetic diversity of var toward the immune escape of P. falciparum has not yet been fully elucidated. This study aimed to characterize the diversity of var repertoires by screening P. falciparum Duffy-binding-like α domain (PfDBLα) among field isolates from central Myanmar. Genetic analysis revealed that the D-H segments of var in Myanmar populations have an extensive polymorphic repertoire, with high numbers of unique sequence types in each individual. However, var genes from the global population, including Myanmar, shared close genetic lineages regardless of their geographic origins, indicating that they have not undergone rapid evolutionary changes.

The effect of Quality of Life by chronic disease using Bigdata (빅데이터를 이용한 만성질환 유무에 따른 삶의 질에 미치는 영향)

  • Kim, Min-kyoung;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.282-285
    • /
    • 2018
  • The purpose of this study is to investigate the effect of personal factors and community factors on the quality of life based on the presence of chronic diseases based on the Big Data Platform. The research methodology was the matching of the 2017 Community Health Survey data and the National Statistical Office data to the health center units. In the study, The higher the age, the higher the education level, the higher the monthly household income, the economic activity, the spouse, the higher the quality of life. In the case of community factors, the lower the population density, the lower the elderly population ratio, the more doctors engaged in medical institutions, the higher the financial independence, the higher the quality of life.

  • PDF

Design of the Medical Bigdata Processing and Management System (의료 빅데이터 처리 및 관리 시스템 설계)

  • Lee, Seung-Jin;Shin, Young-Rok;Park, Jun-Young;Huh, Eui-Nam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.431-434
    • /
    • 2013
  • 최근에는 네트워크가 진화하고 데이터 처리기술이 발달하여 디지털 데이터가 활성화되면서, 기존 데이터 처리 방식으로 감당하기 힘든 규모의 데이터인 빅데이터가 매일 생산되고 있다. 이러한 대규모 데이터는 분석 및 관리를 하는데 어렵고 시간이 많이 걸리지만, 분석을 함으로써 새롭고 유용한 많은 정보를 얻을 수가 있다. 이처럼 빅데이터 분석을 통해 얻어지는 정보가 기존 분석 방식에서 얻어지는 정보와 다른 새로운 정보이기에 많은 산업분야에서 빅데이터 처리에 대한 관심이 많아지고 있다. 이러한 흐름에 따라, 의료분야에서도 빅데이터를 효율적으로 처리 및 관리하기 위한 시스템 구축을 시도하고 있다. 즉, 기존에 정형화 되어 있는 의료 데이터를 분석하여 얻는 정보에 비정형화 되어있는 의료 데이터를 추가하여 새로운 정보를 도출하려 시도하고 있다. 하지만, 여러 병원에서 서로 호환이 가능한 의료 빅데이터 처리 및 관리 시스템을 사용하기 위해서는 명확한 의료 빅데이터 처리 및 관리에 대한 요구사항과 기능정의가 필요하다. 이에 본 논문에서는 의료 빅데이터 처리 및 관리를 위한 요구사항과 기능정의를 하고 의료 빅데이터 처리 및 관리 시스템 구조를 구축하고자한다.

Study on the applicability of regression models and machine learning models for predicting concrete compressive strength

  • Sangwoo Kim;Jinsup Kim;Jaeho Shin;Youngsoon Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.583-589
    • /
    • 2024
  • Accurately predicting the strength of concrete is vital for ensuring the safety and durability of structures, thereby contributing to time and cost savings throughout the design and construction phases. The compressive strength of concrete is determined by various material factors, including the type of cement, composition ratios of concrete mixtures, curing time, and environmental conditions. While mix design establishes the proportions of each material for concrete, predicting strength before experimental measurement remains a challenging task. In this study, Abrams's law was chosen as a representative investigative approach to estimating concrete compressive strength. Abrams asserted that concrete compressive strength depends solely on the water-cement ratio and proposed a logarithmic linear relationship. However, Abrams's law is only applicable to concrete using cement as the sole binding material and may not be suitable for modern concrete mixtures. Therefore, this research aims to predict concrete compressive strength by applying various conventional regression analyses and machine learning methods. Six models were selected based on performance experiment data collected from various literature sources on different concrete mixtures. The models were assessed using Root Mean Squared Error (RMSE) and coefficient of determination (R2) to identify the optimal model.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

Security Requirements of Personal Health Service (개인건강서비스를 위한 보안 요구사항)

  • Kim, Sang-Kon;Hwang, Hee-Joung
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.548-556
    • /
    • 2015
  • When the variety of personal health services are provided in the ICBM(IoT, Cloud, Bigdata, and Mobile) environment, the security requirements of personal health service(PHS) including privacy issues is proposed in this paper. Because it is expected that the services related to personal health are provided in the cloud environment, the security requirements of a cloud environment is firstly investigated and then security threats including direct and indirect threats in a cloud environment are analyzed in terms of the security of PHS. In addition, the security requirements of PHS is developed based on the security requirements of electronic medical record(EMR) for medical service in this paper, then the validity of the proposed security requirements is shown by the relation between security requirements of cloud environment and PHS to indicate that a security requriement is supported by several security requirements of PHS.

Application of Social Big Data Analysis for CosMedical Cosmetics Marketing : H Company Case Study (기능성 화장품 마케팅의 소셜 빅데이터 분석 활용 : H사 사례를 중심으로)

  • Hwang, Sin-Hae;Ku, Dong-Young;Kim, Jeoung-Kun
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.35-41
    • /
    • 2019
  • This study aims to analyze the cosmedical cosmetics market and the nature of customer through the social big data analysis. More than 80,000 posts were analyzed using R program. After data cleansing, keyword frequency analysis and association analysis were performed to understand customer needs and competitor positioning, formulated several implications for marketing strategy sophistication and implementation. Analysis results show that "prevention" is a new and essential attribute for appealing target customers. The expansion of the product line for the gift market is also suggested. It has been shown that there is a high correlation with products that can be complementary to each other. In addition to the traditional marketing technique, the social big data analysis based on evidence was useful in deriving the characteristics of the customers and the market that had not been identified before. Word2vec algorithm will be beneficial to find additional.

A Study on the Development of Artificial Intelligence Human Resources in Healthcare at College (전문대학 헬스케어 분야 인공지능 인력양성에 관한 연구)

  • Yong-Min Park
    • Journal of the Health Care and Life Science
    • /
    • v.11 no.1
    • /
    • pp.67-77
    • /
    • 2023
  • This paper aims as a prior study to cultivate artificial intelligence professionals at the level of colleges in the future by analyzing healthcare services and technologies using artificial intelligence technology. As artificial intelligence technology is recognized as a key engine or core technology in the future that will create national competitiveness and added value, advanced countries are investing a lot of attention and support in developing technologies as well as human resources at the national level. Korea is also promoting national-level R&D manpower training projects such as AI graduate program support projects, and investing heavily in fostering and securing its own artificial intelligence personnel, mainly by large companies, but there is a lack of artificial intelligence experts. This study analyzes the current status of healthcare services and technologies, industries, and artificial intelligence manpower training using artificial intelligence technology, and proposes directions for fostering artificial intelligence personnel at the level of colleges.