Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (RS-2023-00248882). This work was also supported by the MSIT (Ministry of Science and ICT, Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2024-RS-2022-00156409), supervised by IITP (Institute of Information & Communications Technology Planning & Evaluation).
References
- Ahmad, W., Ahmad, A. and Ostrowski, K.A. (2021), "Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review", Case Stud. Constr. Mater., 15, 1-28. https://doi.org/10.1016/j.cscm.2021.e00698.
- Ali, J., Khan, R., Ahmad, N. and Maqsood, I. (2012), "Random forests and decision trees", Int. J. Comput. Sci. Iss., 9(5), 272-278.
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011.
- Atici, U. (2010), "Prediction of the strength of mineral addition concrete using regression analysis", Mag. Concrete Res., 62(8), 585-592. https://doi.org/10.1680/macr.2010.62.8.585.
- Boukhatem, B., Kenai, S., Tagnit-Hamou, A. and Ghrici, M. (2011), "Application of new information technology on concrete: an overview", J. Civil Eng. Manage., 17(2), 248-258. https://doi.org/10.3846/13923730.2011.574343.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45, 5-32. https://doi.org/10.1023/A:1010933404324.
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.00000.
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
- Cover, T. and Hart, P. (1967), "Nearest neighbor pattern classification", IEEE Trans. Inform. Theory, 13, 21-27. https://doi.org/10.1109/TIT.1967.1053964.
- Danial, J.A., Haleh, R. and Panagiotis, G.A. (2024), "An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand", Comput. Concrete, 33(1), 77-90. https://doi.org/10.12989/cac.2024.33.1.077.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict the compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Garg, A., Sharma, A., Li, L., Zheng, W., Lee, B.S. and Raman, R. (2024), "Uncertainty evaluation in density and viscosity of nanofluids at different temperatures using Gaussian process regression-based Monte-Carlo simulations", J. Molecul. Liquid., 411, 125794. https://doi.org/10.1016/j.molliq.2024.125794.
- Gupta, S.M. (2007), "Support vector machines based modelling of concrete strength", World Acad. Sci. Eng. Technol., 36(1), 305-311.
- Ho, T.K. (1995), "Random decision forests", Proceedings of 3rd International Conference on Document Analysis and Recognition, 1, 278-282.
- Hosseini, P., Booshehrian, A., Delkash, M., Ghavami, S. and Zanjani, M.K. (2009), "Use of nano-SiO2 to improve microstructure and compressive strength of recycled aggregate concretes", Nanotechnology in Construction 3: Proceedings of the NICOM3, Springer Berlin Heidelberg.
- Imandoust, S.B. and Bolandraftar, M. (2013), "Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background", Int. J. Eng. Res. Appl., 3(5), 605-610.
- Kaveh, M., Emadaldin. M.G., Majid, S. and Alireza, S. (2021), "Modeling the mechanical properties of rubberized concrete using machine learning methods", Comput. Concrete, 28(6), 567-583. https://doi.org/10.12989/cac.2021.28.6.567.
- Lee, J.J., Kim, D., Chang, S.K. and Nocete, C.F.M. (2009), "An improved application technique of the adaptive probabilistic neural network for predicting concrete strength", Comput. Mater. Sci., 44(3), 988-998. https://doi.org/10.1016/j.commatsci.2008.07.012.
- Lim, C.H., Yoon, Y.S. and Kim, J.H. (2004), "Genetic algorithm in mix proportioning of high-performance concrete", Cement Concrete Res., 34(3), 409-420. https://doi.org/10.1016/j.cemconres.2003.08.018.
- Majid, A., Khan, A., Javed, G. and Mirza, A.M. (2010), "Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression", Comput. Mater. Sci., 50(20), 363-372. https://doi.org/10.1016/j.commatsci.2010.08.028.
- Mendes, E., Watson, I., Triggs, C., Mosley, N. and Counsell, S. (2003), "A comparative study of cost estimation models for web hypermedia applications", Empir. Softw. Eng., 8(2), 163-196. https://doi.org/10.1023/A:1023062629183.
- Mondal, A. and Bhanja, S. (2022), "Augmentation of Abrams law for fly ash concrete", Mater. Today: Proc., 65, 644-650. https://doi.org/10.1016/j.matpr.2022.03.204.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Muliauwan, H.N., Prayogo, D., Gaby, G. and Harsono, K. (2020), "Prediction of concrete compressive strength using artificial intelligence methods", J. Phys. Conf. Ser., 1625(1), 012018. https://doi.org/10.1088/1742-6596/1625/1/012018.
- Ozcan, G., Kocak, Y, and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
- Pazouki, G., Tao, Z., Saeed, N. and Kang, W. (2023), "Using artificial intelligence methods to predict the compressive strength of concrete containing sugarcane bagasse ash", Constr. Build. Mater., 409, 134047. https://doi.org/10.1016/j.conbuildmat.2023.134047.
- Quinlan, J.R. (1986), "Induction of decision trees", Mach. Learn., 1, 81-106.
- Sagar, P., Ibadur, R. and Asif, H. (2023), "Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete", Comput. Concrete, 32(6), 607-613. https://doi.org/10.12989/cac.2023.32.6.607.
- Segal, M.R. (2004), "Machine learning benchmarks and random forest regression", UCSF: Center for Bioinformatics and Molecular Biostatistics.
- Sharma, A., Li, L., Garg, A. and Lee, B. S. (2024), "Probe into the volumetric properties of binary mixtures: Essence of regression-based machine learning algorithms", J. Molec. Liquid., 399, 124498. https://doi.org/10.1016/j.molliq.2024.124498.
- Shukla, N.K., Garg, A., Bhutto, J., Aggarwal, M., Abbas, M., Hussein, H.S., ... & Khan, T.Y. (2023b), "Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms", Comput. Concrete, 32(4), 373-381. https://doi.org/10.12989/cac.2023.32.4.373.
- Shukla, N.K., Garg, A., Bhutto, J., Aggarwal, M., Raja, M.R., Hussein, H.S., ... & Sabherwal, P. (2023a), "An insight into the prediction of mechanical properties of concrete using machine learning techniques", Comput. Concrete, 32(3), 263-286. https://doi.org/10.12989/cac.2023.32.3.263.
- Tiryaki, S. and Aydin, A. (2014), "An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model", Constr. Build. Mater., 62(15), 102-108. https://doi.org/10.1016/j.conbuildmat.2014.03.041.
- Tso, G.K.F. and Yau, K.K.W. (2007), "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks", Energy, 32(9), 1761-1768. https://doi.org/10.1016/j.energy.2006.11.010.
- Unlu, R. (2020), "An assessment of machine learning models for slump flow and examining redundant features", Comput. Concrete, 25(6), 565-574. https://doi.org/10.12989/cac.2020.25.6.565.
- Yan, K. and Shi, C. (2010), "Prediction of elastic modulus of normal and high strength concrete by support vector machine", Constr. Build. Mater., 24(8), 1479-1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006.
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561.
- Yeh, I.C. and Lien, L.C. (2009), "Knowledge discovery of concrete material using genetic operation trees", Exp. Syst. Appl., 36(3), 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004.
- Zhu, L., Zhao, C. and Dai, J. (2021), "Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis", Constr. Build. Mater., 273, 121750. https://doi.org/10.1016/j.conbuildmat.2020.121750.