DOI QR코드

DOI QR Code

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research

다기관 임상연구를 위한 인공지능 학습 플랫폼 구축

  • Received : 2020.07.08
  • Accepted : 2020.09.01
  • Published : 2020.10.31

Abstract

In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문은 의료영상 표준인 R_CDM(Radiology Common Data Model)으로 변환하고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 기존 공통데이터모델(CDM : Common Data Model)과 연계에 중점을 두어 DICOM(Digital Imaging and Communications in Medicine) 태그정보를 기반으로 의료영상 표준 모델의 스키마와 다기관 연구를 위한 Report 정보를 포함하여 시스템을 모델링하였다. 이렇게 변환된 데이터 집합을 기반으로 인공지능 학습 플랫폼에서 수행 과정을 결과로 보인다. 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

Keywords

References

  1. Presidential committee on the Fourth Industrial Revolution, https://www.4th-ir.go.kr/
  2. Sung-Uk Park, "Keyword Analysis of Data Technology Using Big Data Technique," Journal of Korea Technology Innovation Society, Vol.2, No.2, pp.265-281, 2019. https://doi.org/10.35978/jktis.2019.04.22.2.265
  3. G. Hripcsak and J. D. Duke, "Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers," in Stud Health Technology Information, Vol.216, pp.574-578. 2015.
  4. F. FitzHenry, F. S. Resnic, S. L. Robbins, J. Denton, L. Nookala, D. Meeker, L. Ohno-Machado, and M. E. Matheny, "Creating a Common Data Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership," Applied Clinical Informatics, Vol.6, No.2, pp.536-547, 2015. https://doi.org/10.4338/ACI-2014-12-CR-0121
  5. E. A Voss, R. Makadia, A. Matcho, Q. Ma, C. Knoll, M. Schuemie, F. J. DeFalco, A. Londhe, V. Zhu, and P. B. Ryan, "Feasibility and Utility of Applications of the Common Data Model to Multiple, Disparate Observational Health Databases," Journal of the American Medical Informatics Association, Vol.22, No.3, pp.553-564, 2015. https://doi.org/10.1093/jamia/ocu023
  6. FeederNet [Internet], https://feedernet.com/
  7. Radiology-CDM [Internet], https://github.com/WKUH-MCRC/RadiologyCDM_Kor
  8. E. Y. KWON, C.-W. Jeong, D. M. Kang, Y. R. Kim, Y. H. Lee, and K.-H. Yoon, "Development of Common Data Module Extension for Radiology Data (R_CDM): A Pilot Study to Predict Outcome of Liver Cirrhosis with using portal Phase Abdominal Computed Tomography Data," ECR 2019, 10.26044/ecr2019/C-1876.
  9. R.W. Park, "The Distributed Research Network, Observational Health Data Sciences and Informatics, and the South Korean Research Network," The Korean Journal of Medicine, Vol.94, No.4, pp.309-314, 2019. https://doi.org/10.3904/kjm.2019.94.4.309
  10. W. D. Bidgood Jr., S. C. Horii, F. W. Prior, and D. E. Van Syckle, "Understanding and Using DICOM, the Data Interchange Standard for Biomedical Imaging," Journal of the American Medical Informatics Association, Vol.4, No.3, pp.199-212, May-Jun. 1997. https://doi.org/10.1136/jamia.1997.0040199
  11. A. V. Dalca, K. L. Bouman, and W. T. Freeman, N. S. Rost, M. R. Sabuncu, P. Golland, "Medical Image Imputation From Image Collections," IEEE Transactions on Medical Imaging, Vol.38, No.2, pp.504-514, Feb. 2019. https://doi.org/10.1109/TMI.2018.2866692
  12. Marc D., Kohli, Ronald M. Summers, and J. Raymond Geis, "Medical Image Data and Datasets in the Era of Machine Learning-whitepaper from the 2016 C-MIMI Meeting Dataset Session," Journal of Digital Imaging, Vol.30, No.4, pp.392-399, 2017. https://doi.org/10.1007/s10278-017-9976-3
  13. M. G. Pak, S. M. Han, C. S. Lee, C. W. Jeong, and K. H. Yoon, "Medical Dataset Preparation Platform Based on a Common Data Model for Machine Learning," Test Engineering and Management, Vol.81, pp.2410-2415, 2019.
  14. DEEP NOID Solutions [Internet], https://www.deepnoid.com/solutions