• Title/Summary/Keyword: Median control chart

Search Result 15, Processing Time 0.017 seconds

A Comparison of the performance of mean, median, and precedence control charts for nonnormal data

  • Kim, Jung-Hee;Lee, Sung-Im;Park, Heon-Jin;Lee, Jae-Cheol;Jang, Young-Chul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.197-201
    • /
    • 2005
  • In this article, we will compare the performance of the mean control chart, the median control chart, the transformed mean control chart, the transformed median control chart, and the precedence control chart by simulation study. For control charts with transformed data, Yeo-Johnson transformation is used. Under the in-control condition, ARL's in all control charts coincide with the designed ARL in the normal distribution, but in the other distributions, only the precedence control chart provides the in-control ARL as designed. Under the out-of-control condition, the mean control chart is preferred in the normal distribution and the median control chart is preferred in the heavy-tailed distribution and the precedence control chart outperforms in the short-tailed distribution.

  • PDF

A Note on the Median Control Chart

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study reviews several well-known control charts for the location parameter with a discussion of the relationship between the maintenance of the control chart and a series of hypotheses testing. As a by-product, we then propose a new median control chart with the sign test statistic. We also modify the nonparametric control charts to easily understand the relation. Then we illustrate the construction of several median control charts with the industrial data and compare the efficiency among several control charts. Finally, we discuss some interesting features for the median control charts as concluding remarks.

Design of Median Control Chart for Unsymmetrical Weibull Distribution (비대칭(非對稱)와이블분포공정(分布工程)에서 메디안특수관리도(特殊管理圖)의 설계(設計))

  • Sin, Yong-Baek;Hwang, Ui-Mi
    • Journal of Korean Society for Quality Management
    • /
    • v.14 no.2
    • /
    • pp.2-8
    • /
    • 1986
  • This thesis is concerned with the design of control chart based on the sample median which is easy to use in practical situations and to analyze the properties for non-normally distributed Weibull process. In this cases are use to the quality characteristics of the process are not normally distributed but skewed due to the intermitted production, small lot size and sample size is small one n=3 or n=5, etc. And when it relates unsymmetrically distributed process, model designed median control chart is more effective than Shewhart $\bar{x}$-chart which assumed on normal distribution, when we exactly should be known Weibull distribution or estimated. The median control chart in this thesis is more robustness compared with other conventionally developed control chart.

  • PDF

Median Control Chart for Nonnormally Distributed Processes (비정규분포공정에서 매디안특수관리도의 모형설계와 적용연구)

  • 신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.15-25
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the X-chart, X-chart, X-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for tile more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the X-chart, the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the X-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based on a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $X^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the propose4 median chart and the X chart was also performed with these examples and the median chart turned out to be superior to the X-chart.

  • PDF

Median Control Chart for Nonnormally Distributed Processes (비정규분포공정에서 메디안특수관리도 통용모형설정에 관한 실증적 연구(요약))

  • 신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.101-106
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\bar{X}$-chart, $\bar{X}$-chart, $\bar{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In Shewhart $\bar{X}$-chart. which is the most widely used one in Kora, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, Truncated-normal distributions. Robustness of the proposed median control chart is compared with that of the $\bar{X}$-chart; the former tends to be superior to the latter as the probability distribution of the process becomes more skewed. The average run length to detect the assignable cause is also compared when the process has a Normal or a Gamma distribution for which the properties of X are easy to verify, the proposed chart is slightly worse than the $\bar{X}$-chart for the normally distributed product but much better for Gamma-distributed products. Average Run Lengths of the other distributions are also computed. To use the proposed control chart, the probability distribution of the process should be known or estimated. If it is not possible, the results of comparison of the robustness force us to use the proposed median control chart based oh a normal distribution. To estimate the distribution of the process, Sturge's formula is used to graph the histogram and the method of probability plotting, $\chi$$^2$-goodness of fit test and Kolmogorov-Smirnov test, are discussed with real case examples. A comparison of the proposed median chart and the $\bar{X}$ chart was also performed with these examples and the median chart turned out to be superior to the $\bar{X}$-chart.

  • PDF

A Study of the effective approach method for median control chart of non-normally distributed process (비정규분포공정에서 계량치관리를 위한 메디안 특수 관리도의 모형설계와 그 적용에 관한 실용에 연구)

  • 신용백
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.19-32
    • /
    • 1988
  • Whereas is non-symmetrical distribution manufacturing process the traditional X-chart by Shewhart is not plotted relatively on the central line but plotted on the skew of upper-hand side or lower-hand side. That is to say, for the purpose of producing either upper-specification-oriented items or lower-specification-oriented items, and when we carry out tighter control so as to have them pass only its specifications, the distribution shape naturally has a non-normal distribution. In the Shewhart X-chart, which is the most widely used one in Korea, such skewed distributions make tile plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such short comings is non-normally distributed processes, a distribution-free type of confidence interval can be used, which should be haled on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for non-normal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions, may be easily analyzed. To enhance this improvement, I proved the property of practical applications of control chart method by comparing and analyzing the case studies of practical application of special purpose control chart method, and also by introducing the new designed median control chart.

  • PDF

The Design of Median and Range Control Charts for Skewed Distribution Processes (비대칭분석 공정을 위한 중앙치와 범위 관리단의 설계)

  • 김우열;김동묵;정화식;최진섭
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.126-138
    • /
    • 1996
  • The statistical control chart has been proven to be the effective tool most widely used in the manufacturing industry for monitoring and controlling the manufacturing processes. However, the Shewhart chart sometimes gives us false information when the distribution of quality characteristics is skewed. Therefore, it cannot serve as the universal quality control chart if there exist odd events in the manufacturing process. The objective of this study is thus to develop the new technique for constructing the limits of quality control chart based on a sample median and range when the distribution of the underlying population is skewed. This new control chart can effectively solve and manage the processes which have the non-normally distributed quality characteristics frequently occurring in the practical situation.

  • PDF

Design of Median Control Chart for Nonnormally Distributed Processes (비정규분포공정(非正規分布工程)에서 메디안특수관리도(特殊管理圖)의 모형설계(模型設計))

  • Sin, Yong-Baek
    • Journal of Korean Society for Quality Management
    • /
    • v.15 no.2
    • /
    • pp.10-19
    • /
    • 1987
  • Statistical control charts are useful tools to monitor and control the manufacturing processes and are widely used in most Korean industries. Many Korean companies, however, do not always obtain desired results from the traditional control charts by Shewhart such as the $\overline{X}$-chart, X-chart, $\widetilde{X}$-chart, etc. This is partly because the quality charterstics of the process are not distributed normally but are skewed due to the intermittent production, small lot size, etc. In the Shewhart $\overline{X}$-chart, which is the most widely used one in Korea, such skewed distributions make the plots to be inclined below or above the central line or outside the control limits although no assignable causes can be found. To overcome such shortcomings in nonnormally distributed processes, a distribution-free type of confidence interval can be used, which should be based on order statistics. This thesis is concerned with the design of control chart based on a sample median which is easy to use in practical situation and therefore properties for nonnormal distributions may be easily analyzed. Control limits and central lines are given for the more famous nonnormal distributions, such as Gamma, Beta, Lognormal, Weibull, Pareto, and Truncated-normal distributions.

  • PDF

The effect of parameter estimation on $\bar{X}$ charts based on the median run length ($\bar{X}$ 관리도에서 런길이의 중위수에 기초한 모수 추정의 영향)

  • Lee, Yoojin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1487-1498
    • /
    • 2016
  • In monitoring a process, in-control process parameters must be estimated from the Phase I data. When we design the control chart based on the estimated process parameters, the control limits are usually chosen to satisfy a specific in-control average run length (ARL). However, as the run length distribution is skewed when the process is either in-control or out-of-control, the median run length (MRL) can be used as alternative measure instead of the ARL. In this paper, we evaluate the performance of Shewhart $\bar{X}$ chart with estimated parameters in terms of the average of median run length (AMRL) and the standard deviation of MRL (SDMRL) metrics. In simualtion study, the grand sample mean is used as a process mean estimator, and several competing process standard deviation estimators are used to evaluate the in-control performance for various amounts of Phase I data.

Median Control Chart using the Bootstrap Method

  • Lim, Soo-Duck;Park, Hyo-Il;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.365-376
    • /
    • 2007
  • This research considers to propose the control charts using median for the location parameter. In order to decide the control limits, we apply several bootstrap methods through the approach obtaining the confidence interval except the standard bootstrap method. Then we illustrate our procedure using an example and compare the performance among the various bootstrap methods by obtaining the length between control limits through the simulation study. The standard bootstrap may be apt to yield shortest length while the bootstrap-t method, the longest one. Finally we comment briefly about some specific features as concluding remarks.