• Title/Summary/Keyword: Mechanical sensitivity

Search Result 1,390, Processing Time 0.024 seconds

Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM) (부분구조응답함수감소법을 이용한 동적구조변경)

  • Ji, Tae-Han;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

Mechanical Hyperalgesia Induced by Blocking Calcium-activated Potassium Channels on Capsaicin-sensitive Afferent Fiber

  • Lee, Kyung-Hee;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.215-219
    • /
    • 2007
  • Small and large conductance $Ca^{2+}$-activated $K^+(SK_{Ca}\;and\;BK_{Ca})$ channels are implicated in the modulation of neuronal excitability. We investigated how changes in peripheral $K_{Ca}$ channel activity affect mechanical sensitivity as well as the afferent fiber type responsible for $K_{Ca}$ channel-induced mechanical sensitivity. Blockade of $SK_{Ca}$ and $BK_{Ca}$ channels induced a sustained decrease of mechanical threshold which was significantly attenuated by topical application of capsaicin onto afferent fiber and intraplantar injection of 1-ethyl-2-benzimidazolinone. NS1619 selectively attenuated the decrease of mechanical threshold induced by charybdotoxin, but not by apamin. Spontaneous flinching and paw thickness were not significantly different after $K_{Ca}$ channel blockade. These results suggest that mechanical sensitivity can be modulated by $K_{Ca}$ channels on capsaicin-sensitive afferent fibers.

Configuration sensitivity analysis of mechanical dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.112-119
    • /
    • 2001
  • Design sensitivity is an important is an important device in improving a mechanical system design. A continuum design consists of the shape and orientation design. This research develops the shape and orientation design sensitivity method. The configura-tion design variables of multibody systems define the shape and orientation changes. The equations of motion are directly differentiated to obtain the governing equations for the design sensitivity. The governing equation of the design sensitivity is formulated as an over determined differential algebraic equation and treated as ordinary differential equations on mani-folds. The material derivative of a domain functional is performed to obtain the sensitivity due to shape and orientation changes. The configuration design sensitivities of a fly-ball governor system and a spatial four bar mechanism are obtained using the proposed method and are validated against those obtained from the finite difference method.

  • PDF

Model Updating of a Car Body Structure Using a Generalized Free-Interface Mode Sensitivity Method (일반화 자유경계 모드 감도법을 이용한 차체구조물의 모델개선)

  • Jang, Gyeong-Jin;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1133-1145
    • /
    • 2000
  • It is necessary to develop an efficient analysis method to identify the dynamic characteristics of a large mechanical structure and update its finite element model. That is because these processes need the huge computation of a large structure and iterative estimation due to the use of the first- order sensitivity. To efficiently carry out these processes, a new method, called the generalized free-interface mode sensitivity method, has been proposed in the authors' preceeding paper. This method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In this paper, the proposed method is applied to the model updating of a car body structure to verify its accuracy and reliability for a large mechanical structure.

Optimum Sensitivity of Objective Function Using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Shin Jung-Kyu;Lee Sang-Il;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1629-1637
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

Optimum Sensitivity of Objective Function using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Yi S.I.;Shin J.K.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

Application of the Concept of a sSnsitivity Linkage for the Analysis of Mechanical Error in 4-Bar Mechanism (민감도 해석기구를 이용한 4절기구의 기계적 오차해석)

  • Sin, Jae-Kyun;Choi, Hong-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1508-1515
    • /
    • 1996
  • The method of utilizing sensitivity linkages for the analysis of mechanical errors are proposed. As sources of the mechanical error, tolerances in the link length and clearances in thejoints are considered. It is demonstrated that the problem of calculating mechanical errors of a 4-bar mechanism can be transformed into a problem of conventeional velocity analysis of a sensitivity linkage. As a result of the present study, it is found and proved that the mechanical error of the output angle in the 4-Bar mechaism is represented as a simple harmonic function with respect to the relative position of the pin on the clearance circle. Also the vector representing the mechanical error of a coupler point makes, in general, an ellipse as the relative angle varies on the clearance circle. With these results we can better identify the characteristic of the mechanical errors in linkages.

Analytical Sensitivity Analysis of Geometric Errors in a Three-Axis Machine Tool (해석적 방법을 통한 3 축 공작기계의 기하학적 오차 민감도 분석)

  • Park, Sung-Ryung;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.165-171
    • /
    • 2012
  • In this paper, an analytical method is used to perform a sensitivity analysis of geometric errors in a three-axis machine tool. First, an error synthesis model is constructed for evaluating the position volumetric error due to the geometric errors, and then an output variable is defined, such as the magnitude of the position volumetric error. Next, the global sensitivity analysis is executed using an analytical method. Finally, the sensitivity indices are calculated using the quantitative values of the geometric errors.