• Title/Summary/Keyword: Mean curvature vector

Search Result 51, Processing Time 0.024 seconds

SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.935-949
    • /
    • 2013
  • In this paper, we study surfaces in $\mathb{E}^3$ whose Gauss map G satisfies the equation ${\Box}G=f(G+C)$ for a smooth function $f$ and a constant vector C, where ${\Box}$ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation ${\Box}G={\lambda}(G+C)$ for a constant ${\lambda}$ and a constant vector C.

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

2-TYPE HYPERSURFACES SATISFYING ⟨Δx, x - x0⟩ = const.

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.643-649
    • /
    • 2018
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigenvectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in $E^{n+1}$ whose postion vector x satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle}$, ${\rangle}$ is the usual inner product in $E^{n+1}$, is of null 2-type and has constant mean curvature and scalar curvature.

COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE

  • Ya Gao;Yanling Gao;Jing Mao;Zhiqi Xie
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.183-205
    • /
    • 2024
  • In this paper, for an m-dimensional (m ≥ 5) complete non-compact submanifold M immersed in an n-dimensional (n ≥ 6) simply connected Riemannian manifold N with negative sectional curvature, under suitable constraints on the squared norm of the second fundamental form of M, the norm of its weighted mean curvature vector |Hf| and the weighted real-valued function f, we can obtain: • several one-end theorems for M; • two Liouville theorems for harmonic maps from M to complete Riemannian manifolds with nonpositive sectional curvature.

Speckle Noise Removal by Rank-ordered Differences Diffusion Filter (순위 차 확산 필터를 이용한 스페클 잡음 제거)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.21-30
    • /
    • 2009
  • The purposes of this paper are to present a selection method of neighboring pixels whose local statistics are similar to the center pixel and combine the selection result with mean curvature diffusion filter to reduce noises in remote sensed imagery. The order of selection of neighboring pixels is critical, especially for finding a pixel belonging to the homogeneous region, since the statistics of the homogeneous region vary according to the selection order. An effective strategy for selecting neighboring pixels, which uses rank-order differences vector obtained by computing the intensity differences between the center pixel and neighboring pixels and arranging them in ascending order, is proposed in this paper. By using region growing method, we divide the elements of the rank-ordered differences vector into two groups, homogeneous rank-ordered differences vector and outlier rank-ordered differences vector. The mean curvature diffusion filter is combined with a line process, which chooses selectively diffusion coefficient of the neighboring pixels belonging into homogeneous rank-ordered differences vector. Experimental results using an aerial image and a TerraSAR-X satellite image showed that the proposed method reduced more efficiently noises than some conventional adaptive filters using all neighboring pixels in updating the center pixel.

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1311-1332
    • /
    • 2013
  • This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

Totally real submanifolds with parallel mean curvature vector in a complex space form

  • Ki, U-Hang;Kim, Byung-Hak;Kim, He-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-848
    • /
    • 1995
  • Let $M_n$(c) be an n-dimensional complete and simply connected Kahlerian manifold of constant holomorphic sectional curvature c, which is called a complex space form. Then according to c > 0, c = 0 or c < 0 it is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$.

  • PDF

ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS

  • Erken, Irem Kupeli;Murathan, Cengizhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1749-1771
    • /
    • 2014
  • In this paper, we introduce slant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds. We obtain some results on slant Riemannian submersions of a cosymplectic manifold. We also give examples and inequalities between the scalar curvature and squared mean curvature of fibres of such slant submersions in the cases where the characteristic vector field is vertical or horizontal.

LOW TYPE PSEUDO-RIEMANNIAN SUBMANIFOLDS

  • Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.437-452
    • /
    • 1997
  • We study low type submanifolds in pseudo-Euclidean space which is especially of 2-type pseudo-umbilical. We also determine full null 2-type surfaces with parallel mean curvature vector in 4-dimensional Minkowski space-time.

  • PDF