SLANT CURVES IN 3-DIMENSIONAL ALMOST f-KENMOTSU MANIFOLDS

Jun-Ichi Inoguchi and Ji-Eun Lee

Abstract. In this paper, we study slant curves in a 3-dimensional almost f-Kenmotsu manifold with proper mean curvature vector field.

1. Introduction

Euclidean submanifolds $M^{m} \subset \mathbb{R}^{n}$ with proper mean curvature vector field $\triangle H=\lambda H, \lambda \in \mathbb{R}$ have been studied extensively (see [8] and references therein).

Arroyo, Barros and Garay ([1], [3]) studied curves and surfaces in the 3sphere \mathbb{S}^{3} with proper mean curvature vector field. Chen studied surfaces in hyperbolic 3 -space \mathbb{H}^{3} with proper mean curvature vector fields in [9].

On the other hand, as the generalization of Legendre curve, the notion of slant curves was introduced in [10].

A unit speed curve γ in an almost contact metric 3-manifold $(M ; \varphi, \xi, \eta, g)$ is said to be slant if its tangent vector field makes constant contact angle θ with ξ, i.e., $\cos \theta:=\eta\left(\gamma^{\prime}\right)$ is constant along γ.

In our previous paper [10], we studied slant curves in Sasakian 3-manifolds. In [11], we have shown that biharmonic curves in Sasakian space forms are slant.

Călin and Crasmareanu [5] studied slant curves in 3-dimensional normal almost contact geometry. Moreover, Călin, Crasmareanu and Munteanu [6] studied slant curves with proper mean curvature vector field in three-dimensional f-Kenmotsu manifolds. In particular, they have given explicit parametrization of slant curves in the hyperbolic 3 -space equipped with natural homogeneous normal almost contact metric structure (Kenmotsu structure of constant curvature). The present authors studied almost Legendre curves in normal almost contact metric 3-manifolds with proper mean curvature vector field [12]. Suh, Lee and the second named author studied Legendre curves in Sasakian 3 -manifolds whose mean curvature vector field satisfies C-parallel or C-proper condition [13].

Key words and phrases. slant curves, almost contact manifold.

In this paper, we study slant curve in a 3 -dimensional almost f-Kenmotsu manifold. As a generalization of the class of f-Kenmotsu manifolds, the notion of almost f-Kenmotsu manifold was introduced in Section 2.2. An almost f-Kenmotsu manifold is f -Kenmotsu manifold if and only if it is normal.

In Section 3.1, we determine the torsion of slant curve in a 3-dimensional almost f-Kenmotsu manifold. In Section 3.2, we obtain the necessary and sufficient conditions for a non-geodesic slant curve in 3-dimensional almost f Kenmotsu manifolds to have proper mean curvature vector field.

2. Almost contact manifolds

2.1. Almost contact manifolds

Let M be a manifold of odd dimension $m=2 n+1$. Then M is said to be an almost contact manifold if its structure group $\mathrm{GL}_{m} \mathbb{R}$ of the linear frame bundle is reducible to $\mathrm{U}(n) \times\{1\}$. This is equivalent to the existence of a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying

$$
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1
$$

From these conditions one can deduce that

$$
\varphi \xi=0, \quad \eta \circ \varphi=0
$$

Moreover, since $\mathrm{U}(n) \times\{1\} \subset \mathrm{SO}(2 n+1), M$ admits a Riemannian metric g satisfying

$$
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)
$$

for all $X, Y \in \mathfrak{X}(M)$. Here $\mathfrak{X}(M)=\Gamma(T M)$ denotes the Lie algebra of all smooth vector fields on M. Such a metric is called an associated metric of the almost contact manifold $M=(M, \varphi, \xi, \eta)$. With respect to the associated metric g, η is metrically dual to ξ, that is

$$
g(X, \xi)=\eta(X)
$$

for all $X \in \mathfrak{X}(M)$. A structure (φ, ξ, η, g) on M is called an almost contact metric structure, and a manifold M equipped with an almost contact metric structure is said to be an almost contact metric manifold.

The fundamental 2 -form Φ of $(M, \varphi, \xi, \eta, g)$ is defined by

$$
\Phi(X, Y)=g(X, \varphi Y), \quad X, Y \in \mathfrak{X}(M)
$$

On the direct product manifold $M \times \mathbb{R}$ of an almost contact metric manifold and the real line \mathbb{R}, any tangent vector field can be represented as the form $(X, f \mathrm{~d} / \mathrm{d} t)$, where $X \in \mathfrak{X}(M)$ and f is a function on $M \times \mathbb{R}$ and t is the Cartesian coordinate on the real line \mathbb{R}.

Define an almost complex structure J on $M \times \mathbb{R}$ by

$$
J(X, \lambda \mathrm{~d} / \mathrm{d} t)=(\varphi X-\lambda \xi, \eta(X) \mathrm{d} / \mathrm{d} t)
$$

If J is integrable, then M is said to be normal.

Equivalently, M is normal if and only if

$$
[\varphi, \varphi](X, Y)+2 \mathrm{~d} \eta(X, Y) \xi=0
$$

where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ defined by

$$
[\varphi, \varphi](X, Y)=[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]
$$

for any $X, Y \in \mathfrak{X}(M)$.
For more details on almost contact metric manifolds, we refer to Blair's monograph [4].

2.2. Almost f-Kenmotsu manifolds

For an arbitrary almost contact metric 3-manifold M, we have [14]:

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g\left(\varphi \nabla_{X} \xi, Y\right) \xi-\eta(Y) \varphi \nabla_{X} \xi \tag{2.1}
\end{equation*}
$$

where ∇ is the Levi-Civita connection on M. Moreover, we have

$$
\mathrm{d} \eta=\eta \wedge \nabla_{\xi} \eta+\alpha \Phi, \quad \mathrm{d} \Phi=2 f \eta \wedge \Phi,
$$

where α and f are the functions defined by

$$
\begin{equation*}
\alpha=\frac{1}{2} \operatorname{Trace}(\varphi \nabla \xi), \quad f=\frac{1}{2} \operatorname{Trace}(\nabla \xi)=\frac{1}{2} \operatorname{div} \xi . \tag{2.2}
\end{equation*}
$$

Now assume that M is an almost f-Kenmotsu 3-manifold. Then we have

$$
\begin{equation*}
\nabla_{X} \xi=f(X-\eta(X) \xi)+h \varphi X \tag{2.3}
\end{equation*}
$$

where $h=£_{\xi \varphi} / 2$ and $f \in C^{\infty}(M)$ is strictly positive.
From this equation we have

$$
\varphi \nabla_{X} \xi=f \varphi X+\varphi h \varphi X
$$

Inserting this into (2.1), we get

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(\varphi(f I+h \varphi) X, Y) \xi-\eta(Y) \varphi(f I+h \varphi) X \tag{2.4}
\end{equation*}
$$

For a 3 -dimensional f-Kenmotsu manifold M, using the equations (2.3), (2.4) and $h=0$, we have

$$
\begin{gathered}
\left(\nabla_{X} \varphi\right) Y=f(g(\varphi X, Y) \xi-\eta(Y) \varphi X), \\
\nabla_{X} \xi=f(X-\eta(X) \xi)
\end{gathered}
$$

If f is a positive constant β, we get an almost β-Kenmotsu manifold. In particular, if $h=0$, then it is a β-Kenmotsu manifold. 1-Kenmotsu manifold is called Kenmotsu manifold.

2.3. Frenet frame field

Now let $\gamma(s)$ be a unit curve in the oriented Riemannian 3-manifold (M^{3}, g, $\left.\mathrm{d} v_{g}\right)$ with non-vanishing acceleration $\nabla_{\gamma^{\prime}} \gamma^{\prime}$. Then we put $\kappa:=\left|\nabla_{\gamma^{\prime}} \gamma^{\prime}\right|$. We can take a unit normal vector field N by the formula $\nabla_{\gamma^{\prime}} \gamma^{\prime}=\kappa N$. Next define a unit vector field B by $B=T \times N$. Here $T=\gamma^{\prime}$. In this way we obtain an orthonormal frame field $\mathcal{F}=(T, N, B)$ along γ which is positively oriented, that is, $\mathrm{d} v_{g}(T, N, B)=1$. The orthonormal frame field \mathcal{F} is called the Frenet frame field and satisfies

$$
\nabla_{\gamma^{\prime}} \mathcal{F}=\mathcal{F}\left(\begin{array}{ccc}
0 & -\kappa & 0 \tag{2.5}\\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right)
$$

for some function τ. The functions κ and τ are called the curvature and torsion of γ, respectively. The ordinary differential equation (2.5) is called the Frenet-Serret formula of γ. The unit vector fields T, N and B are called the tangent vector field, principal normal vector field and binormal vector field of γ, respectively.

3. Slant curves in almost f-Kenmotsu manifolds

In this section, we consider slant curves in almost f-Kenmotsu manifolds.
Let γ be a non-geodesic curve in an almost contact metric 3-manifold M. Differentiating the formula $g(T, \xi)=\cos \theta$ along γ with respect to the LeviCivita connection ∇, then it follows that

$$
-\theta^{\prime} \sin \theta=g(\kappa N, \xi)+g\left(T, \nabla_{T} \xi\right)=\kappa \eta(N)+f \sin ^{2} \theta+g(T, h \varphi T) .
$$

This equation implies the following result.
Proposition 3.1. A Frenet curve γ is a slant curve in an almost f-Kenmotsu manifold M then γ satisfies

$$
\begin{equation*}
\eta(N)=-\frac{1}{\kappa}\left\{f \sin ^{2} \theta+g\left(\gamma^{\prime}, h \varphi \gamma^{\prime}\right)\right\} \tag{3.1}
\end{equation*}
$$

Using the Frenet frame field $\{T, N, B\}$, we express

$$
\xi=(\cos \theta) T-\frac{1}{\kappa}\left(f \sin ^{2} \theta+g(T, h \varphi T)\right) N+\eta(B) B .
$$

Since ξ is a unitary vector field, we get

$$
\eta(B)=\frac{1}{\kappa} \sqrt{\kappa^{2} \sin ^{2} \theta-\left(f \sin ^{2} \theta+b\right)^{2}}
$$

Hence we get:
Remark 1. For slant curve γ the decomposition of ξ is

$$
\xi=\cos \theta T-\frac{1}{\kappa}\left(f \sin ^{2} \theta+b\right) N+\left(\frac{1}{\kappa} \sqrt{\kappa^{2} \sin ^{2} \theta-\left(f \sin ^{2} \theta+b\right)^{2}}\right) B
$$

where $b=g\left(h \varphi \gamma^{\prime}, \gamma^{\prime}\right)$.

3.1. The curvature and torsion

We suppose that γ is non-geodesic slant curve then γ can not be an integral curve of ξ. In general, we find an orthonormal frame field in almost contact metric 3-manifold M along γ

$$
\begin{equation*}
e_{1}=T=\gamma^{\prime}, \quad e_{2}=\frac{\varphi \gamma^{\prime}}{|\sin \theta|}, \quad e_{3}=\frac{\xi-\cos \theta \gamma^{\prime}}{|\sin \theta|} \tag{3.2}
\end{equation*}
$$

Also $\xi=\cos \theta e_{1}+|\sin \theta| e_{3}$. Thus, we put $a=g\left(h \gamma^{\prime}, \gamma^{\prime}\right), b=g\left(h \varphi \gamma^{\prime}, \gamma^{\prime}\right)$ then

$$
\begin{align*}
& h \gamma^{\prime}=a e_{1}+\frac{b}{|\sin \theta|} e_{2}-a \frac{\cos \theta}{|\sin \theta|} e_{3}, \tag{3.3}\\
& h \varphi \gamma^{\prime}=b e_{1}-a|\sin \theta| e_{2}-\frac{\cos \theta}{|\sin \theta|}(b+a \cos \theta) e_{3} \tag{3.4}
\end{align*}
$$

From the equation (2.3), we get

$$
\nabla_{\gamma^{\prime}} \xi=\left(b+f \sin ^{2} \theta\right) e_{1}-a|\sin \theta| e_{2}-\frac{\cos \theta}{|\sin \theta|}\left(f \sin ^{2} \theta+b+a \cos \theta\right) e_{3} .
$$

Then we have

$$
\left\{\begin{align*}
\nabla_{\gamma^{\prime}} e_{1} & =\delta|\sin \theta| e_{2}-\frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right) e_{3} \tag{3.5}\\
\nabla_{\gamma^{\prime}} e_{2} & =-\delta|\sin \theta| e_{1}+(a+\delta \cos \theta) e_{3} \\
\nabla_{\gamma^{\prime}} e_{3} & =\frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right) e_{1}-(a+\delta \cos \theta) e_{2}
\end{align*}\right.
$$

where $\delta=g\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}, \varphi \gamma^{\prime}\right) / \sin ^{2} \theta, a=g\left(h \gamma^{\prime}, \gamma^{\prime}\right), b=g\left(h \varphi \gamma^{\prime}, \gamma^{\prime}\right)$.
From the first equation of (3.5), we get

$$
\begin{equation*}
\kappa=\sqrt{\delta^{2} \sin ^{2} \theta+\frac{1}{\sin ^{2} \theta}\left(b+f \sin ^{2} \theta\right)^{2}} . \tag{3.6}
\end{equation*}
$$

From the above equation, we have:
Proposition 3.2. Let γ be a slant curve in 3-dimensional almost f-Kenmotsu manifolds. Then γ is a geodesic if and only if γ satisfies

$$
g\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}, \varphi \gamma^{\prime}\right)=0 \quad \text { and } \quad g\left(h \varphi \gamma^{\prime}, \gamma^{\prime}\right)+f \sin ^{2} \theta=0
$$

where γ is non-parallel to ξ.
Thus the principal normal vector field $N=\frac{1}{\kappa}\left\{\delta|\sin \theta| e_{2}-\frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right) e_{3}\right\}$. Differentiating N and using (3.5) we get

$$
\begin{aligned}
\nabla_{\gamma^{\prime}} N= & -\frac{1}{\kappa}\left\{\delta^{2} \sin ^{2} \theta+\frac{1}{\sin ^{2} \theta}\left(b+f \sin ^{2} \theta\right)^{2}\right\} e_{1} \\
& +\left\{-\frac{\kappa^{\prime}}{\kappa^{2}} \delta|\sin \theta|+\frac{1}{\kappa} \delta^{\prime}|\sin \theta|+\frac{1}{\kappa} \frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right)(a+\delta \cos \theta)\right\} e_{2} \\
& +\left\{\frac{\kappa^{\prime}}{\kappa^{2}} \frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right)-\frac{1}{\kappa} \frac{1}{|\sin \theta|}\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)\right.
\end{aligned}
$$

$$
\left.+\frac{1}{\kappa} \delta|\sin \theta|(a+\delta \cos \theta)\right\} e_{3} .
$$

Differentiating (3.6), $\kappa^{\prime}=\frac{1}{\kappa}\left\{\delta \delta^{\prime} \sin ^{2} \theta+\frac{1}{\sin ^{2} \theta}\left(b+f \sin ^{2} \theta\right)\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)\right\}$. Hence we obtain

$$
\begin{equation*}
\tau=\frac{1}{\kappa^{2}}\left\{\delta^{\prime}\left(b+f \sin ^{2} \theta\right)-\delta\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)\right\}+(a+\delta \cos \theta) \tag{3.7}
\end{equation*}
$$

thus binormal vector field $B=\frac{1}{\kappa}\left\{\frac{1}{|\sin \theta|}\left(b+f \sin ^{2} \theta\right) e_{2}+\delta|\sin \theta| e_{3}\right\}$.
From (3.6) we get $\delta=\frac{1}{\sin ^{2} \theta} \sqrt{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}}$. Differentiating (3.6) we have $\delta^{\prime}=\frac{1}{\delta \sin ^{4} \theta}\left\{\kappa \kappa^{\prime} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)\left(b^{\prime}+f^{\prime} \sin ^{\theta}\right)\right\}$. Hence we have:

Theorem 3.1. Let γ be a non-geodesic slant curve in 3-dimensional almost f-Kenmotsu manifolds. Then

$$
\begin{align*}
\text { (3.8) } \tau= & \frac{1}{\kappa \sqrt{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}}}\left\{\kappa^{\prime}\left(b+f \sin ^{2} \theta\right)-\kappa\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)\right\} \tag{3.8}\\
& +\frac{\cos \theta}{\sin ^{2} \theta} \sqrt{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}}+a \\
\text { where } a= & g\left(h \gamma^{\prime}, \gamma^{\prime}\right) \text { and } b=g\left(h \varphi \gamma^{\prime}, \gamma^{\prime}\right)
\end{align*}
$$

For a non-geodesic slant curve in f-Kenmotsu manifolds, since $a=b=0$, we have the following

Corollary 3.1 ([6]). Let γ be a non-geodesic slant curve with $\theta \neq 0$, π such that N is non-parallel to ξ in 3-dimensional f-Kenmotsu manifolds. Then its torsion is:

$$
\tau=\frac{\cos \theta}{|\sin \theta|} \sqrt{\kappa^{2}-f^{2} \sin ^{2} \theta}-\frac{\kappa|\sin \theta|}{\sqrt{\kappa^{2}-f^{2} \sin ^{2} \theta}} \gamma^{\prime}(f / \kappa) .
$$

In case f is a non-zero constant, the following statements hold: a non-geodesic slant curve with constant curvature κ has a constant torsion τ and so, is a helix.

3.2. Proper mean curvature vector field

The mean curvature vector field H with respect to the Levi-Civita connection ∇ of a curve γ in 3-dimensional oriented Riemannian 3-manifold is defined by

$$
H=\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa N
$$

Using (2.5), we have:
Lemma 3.1. Let (M, g) be an oriented Riemannian 3-manifold and γ a unit speed curve. Then we have

$$
\begin{align*}
& \nabla_{\gamma^{\prime}} H=-\kappa^{2} T+\kappa^{\prime} N+\kappa \tau B \tag{3.9}\\
& \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} H=-3 \kappa \kappa^{\prime} T+\left(\kappa^{\prime \prime}-\kappa^{3}-\kappa \tau^{2}\right) N+\left(2 \kappa^{\prime} \tau+\kappa \tau^{\prime}\right) B \tag{3.10}
\end{align*}
$$

Definition 3.1. In 3-dimensional oriented Riemannian manifolds M^{3}, a vector field X along a unit speed curve γ is said to be parallel if $\nabla_{\gamma^{\prime}} X=0$.

Using the Lemma 3.1, we get:
Proposition 3.3. Let (M, g) be an oriented Riemannian 3-manifold and γ a unit speed curve. Then γ has parallel mean curvature vector field if and only if γ is a geodesic.

We define the Laplace-Beltrami operator Δ of $\gamma^{*} T M$,

$$
\Delta=-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}}
$$

For a curve γ in an oriented Riemannian 3-manifold M with Levi-Civita connection ∇,

$$
\Delta H=-\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}
$$

γ has a proper mean curvature vector field if and only if γ is a helix satisfying $\lambda=\kappa^{2}+\tau^{2}$.

From Theorem 3.1 we have:
Theorem 3.2. A non-geodesic slant curve γ in 3 -dimensional almost f-Kenmotsu manifolds has proper mean curvature vector field if and only if γ is a helix satisfying

$$
\begin{aligned}
\lambda= & \frac{\kappa^{2}}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{4} \theta}\left(b+f \sin ^{2} \theta\right)^{2}-\frac{2 \cos \theta}{\sin ^{2} \theta}\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right) \\
& +\frac{\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)^{2}}{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}} \\
& +a\left\{\frac{2 \cos \theta}{\sin ^{2} \theta} \sqrt{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}}-\frac{2\left(b^{\prime}+f^{\prime} \sin ^{2} \theta\right)}{\sqrt{\kappa^{2} \sin ^{2} \theta-\left(b+f \sin ^{2} \theta\right)^{2}}}\right\}+a^{2} .
\end{aligned}
$$

For 3-dimensional f-Kenmotsu manifolds, since $a=b=0$, we have the following.

Corollary 3.2 ([6]). A non-geodesic slant curve in 3 -dimensional f-Kenmotsu manifolds has proper mean curvature vector field if and only if γ is a helix satisfying

$$
\lambda=\frac{\kappa^{2}}{\sin ^{2} \theta}-f^{2} \cos ^{2} \theta+\frac{f^{\prime 2} \sin ^{2} \theta}{\kappa^{2}-f^{2} \sin ^{2} \theta}-2 f^{\prime} \cos \theta
$$

Corollary 3.3 ([6]). Let γ be a slant curve in the hyperbolic space $H^{3}(-1)$ as the warped product K_{1}^{3} with constant sectional curvature -1 . If γ has proper mean curvature vector field. Then γ is
$\gamma(s)=\left(s \cos \theta, \frac{\sin \theta e^{-s \cos \theta}}{c^{2}+\cos ^{2} \theta}(c \sin (c s)-\cos \theta \cos (c s),-c \cos (c s)-\cos \theta \sin (c s))\right)$,
where c is a constant.

References

[1] J. Arroyo, M. Barros, and O. J. Garay, A characterisation of Helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc. 56 (1997), no. 1, 37-49
2] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1503-1509.
[3] M. Barros and O. J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2545-2549.
[4] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. 203, Birkhäuser, Boston, Basel, Berlin, 2002.
[5] C. Calin and M. Crasmareanu, Slant curves in 3-dimensional normal almost contact geometry, Mediterr. J. Math. 10 (2013), no. 2, 1067-1077.
[6] C. Calin, M. Crasmareanu, and M.-I. Munteanu, Slant curves in three-dimensional fKenmotsu manifolds, J. Math. Anal. Appl. 394 (2012), no. 1, 400-407.
[7] C. Calin and M. Ispas, On a normal contact metric manifold, Kyoungpook Math. J. 45 (2005), no. 1, 55-65.
[8] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169-188.
[9] , Some classification theorems for submanifolds in Minkowski space-time, Arch. Math. (Basel) 62 (1994), no. 2, 177-182.
[10] J. T. Cho, J. Inoguchi, and J.-E. Lee, On slant curves in Sasakian 3-manifolds, Bull. Austral. Math. Soc. 74 (2006), no. 3, 359-367.
[11] , Biharmonic curves in 3-dimensional Sasakian space forms, Annali di Mat. Pura Appl. 186 (2007), no. 4, 685-701.
[12] J. Inoguchi and J.-E. Lee, Almost contact curves in normal almost contact metric 3manifolds, J. Geom. 103 (2012), no. 3, 457-474.
[13] J.-E. Lee, Y. J. Suh, and H. Lee, C-parallel mean curvature vector fields along slant curves in Sasakian 3-manifolds, Kyungpook Math. J. 52 (2012), no. 1, 49-59.
[14] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 42-50.
[15] B. O'Neill, Elementary Differential Geometry, Academic Press, 1966.
[16] V. Saltarlli, Three-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions, arXiv:1007.1443v4.
[17] D. J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley Press Inc., Cambridge, Mass., 1950, Reprint of the second edition, Dover, New York, 1988.
[18] J. Wełyczko, On Legendre curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math. 33 (2007), no. 4, 929-937.

Jun-Ichi Inoguchi
Institute of Mathematics
University of Tsukuba
Tsukuba, 305-8571, Japan
E-mail address: inoguchi@math.tsukuba.ac.jp
Ji-Eun Lee
Research Institute for Basic Sciences
Incheon National University
Incheon, 406-772, Korea
E-mail address: jieunlee12@naver.com

