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SLANT CURVES IN 3-DIMENSIONAL ALMOST
F-KENMOTSU MANIFOLDS

JUN-IcHI INOGUCHI AND JI-EUN LEE

ABSTRACT. In this paper, we study slant curves in a 3-dimensional almost
f-Kenmotsu manifold with proper mean curvature vector field.

1. Introduction

Euclidean submanifolds M™ C R™ with proper mean curvature vector field
AH = AH, X € R have been studied extensively (see [8] and references therein).

Arroyo, Barros and Garay ([1], [3]) studied curves and surfaces in the 3-
sphere S? with proper mean curvature vector field. Chen studied surfaces in
hyperbolic 3-space H® with proper mean curvature vector fields in [9].

On the other hand, as the generalization of Legendre curve, the notion of
slant curves was introduced in [10].

A unit speed curve v in an almost contact metric 3-manifold (M;,&,n,9)
is said to be slant if its tangent vector field makes constant contact angle 6
with &, i.e., cosf :=n(y’) is constant along .

In our previous paper [10], we studied slant curves in Sasakian 3-manifolds.
In [11], we have shown that biharmonic curves in Sasakian space forms are
slant.

Calin and Crasmareanu [5] studied slant curves in 3-dimensional normal al-
most contact geometry. Moreover, Cilin, Crasmareanu and Munteanu [6] stud-
ied slant curves with proper mean curvature vector field in three-dimensional
f-Kenmotsu manifolds. In particular, they have given explicit parametrization
of slant curves in the hyperbolic 3-space equipped with natural homogeneous
normal almost contact metric structure (Kenmotsu structure of constant cur-
vature). The present authors studied almost Legendre curves in normal al-
most contact metric 3-manifolds with proper mean curvature vector field [12].
Suh, Lee and the second named author studied Legendre curves in Sasakian
3-manifolds whose mean curvature vector field satisfies C-parallel or C-proper
condition [13].
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In this paper, we study slant curve in a 3-dimensional almost f-Kenmotsu
manifold. As a generalization of the class of f-Kenmotsu manifolds, the notion
of almost f-Kenmotsu manifold was introduced in Section 2.2. An almost
f-Kenmotsu manifold is f-Kenmotsu manifold if and only if it is normal.

In Section 3.1, we determine the torsion of slant curve in a 3-dimensional
almost f-Kenmotsu manifold. In Section 3.2, we obtain the necessary and
sufficient conditions for a non-geodesic slant curve in 3-dimensional almost f-
Kenmotsu manifolds to have proper mean curvature vector field.

2. Almost contact manifolds
2.1. Almost contact manifolds

Let M be a manifold of odd dimension m = 2n+1. Then M is said to be an
almost contact manifold if its structure group GL,,,R of the linear frame bundle
is reducible to U(n) x {1}. This is equivalent to the existence of a tensor field
v of type (1,1), a vector field £ and a 1-form n satisfying

P =-IT+n®¢& nE) =1

From these conditions one can deduce that

9§ =0, nop=0.
Moreover, since U(n) x {1} € SO(2n + 1), M admits a Riemannian metric g
satisfying
9(eX, oY) = g(X,Y) = n(X)n(Y)
for all X, Y € X(M). Here X(M) = I'(TM) denotes the Lie algebra of all
smooth vector fields on M. Such a metric is called an associated metric of

the almost contact manifold M = (M, ¢, &, n). With respect to the associated
metric g, n is metrically dual to £, that is

9(X, &) = n(X)

for all X € X(M). A structure (p,&,n,9) on M is called an almost contact
metric structure, and a manifold M equipped with an almost contact metric

structure is said to be an almost contact metric manifold.
The fundamental 2-form ® of (M, p, &, 1, g) is defined by

P(X,)Y)=9g(X,¢Y), X, Y €X(M).

On the direct product manifold M x R of an almost contact metric manifold
and the real line R, any tangent vector field can be represented as the form
(X, fd/dt), where X € X(M) and f is a function on M x R and ¢ is the
Cartesian coordinate on the real line R.

Define an almost complex structure J on M x R by

J(X,Ad/dt) = (X — A&, n(X)d/d¢).
If J is integrable, then M is said to be normal.
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Equivalently, M is normal if and only if
[0, P](X,Y) + 2dn(X, Y)E = 0,
where [y, ¢] is the Nijenhuis torsion of ¢ defined by
[0, e)(X,Y) = [0X, oY ] + ¢ [X, Y] = [pX, Y] — ¢[X, pY]

for any X,Y € X(M).
For more details on almost contact metric manifolds, we refer to Blair’s
monograph [4].

2.2. Almost f-Kenmotsu manifolds

For an arbitrary almost contact metric 3-manifold M, we have [14]:
(2.1) (Vx)Y = g(¢pVx&, Y)E = n(Y)pVxé,
where V is the Levi-Civita connection on M. Moreover, we have

dnp=nAVen+a®, do=2fnAd,
where a and f are the functions defined by
1 1 1.

(2.2) o= §Trace (eVE), f= §Trace (V¢) = §d1V €.

Now assume that M is an almost f-Kenmotsu 3-manifold. Then we have

(2.3) Vx§ = f(X =n(X)§) + heX,

where h = £¢p/2 and f € C°°(M) is strictly positive.
From this equation we have

PVxE = fpX +phpX.
Inserting this into (2.1), we get

(2.4) (Vx@)Y = g(o(fI+hp)X,Y)E—n(Y)e(fT+ hp)X.

For a 3-dimensional f-Kenmotsu manifold M, using the equations (2.3),
(2.4) and h = 0, we have

(Vxp)Y = f(g(pX,Y)E —n(Y)pX),

Vx§ = f(X =n(X)E).

If f is a positive constant 3, we get an almost B-Kenmotsu manifold. In par-
ticular, if h = 0, then it is a S-Kenmotsu manifold. 1-Kenmotsu manifold is
called Kenmotsu manifold.
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2.3. Frenet frame field

Now let v(s) be a unit curve in the oriented Riemannian 3-manifold (M3, g,
dvg) with non-vanishing acceleration V.4'. Then we put x := |V,~/|. We
can take a unit normal vector field N by the formula V. = kN. Next define
a unit vector field B by B = T x N. Here T = 7’. In this way we obtain
an orthonormal frame field 7 = (T, N, B) along « which is positively oriented,
that is, dvy(T, N, B) = 1. The orthonormal frame field F is called the Frenet
frame field and satisfies

0 —x O
(2.5) VyF=F| v 0 -7
0 7 0

for some function 7. The functions x and 7 are called the curvature and
torsion of 7, respectively. The ordinary differential equation (2.5) is called the
Frenet-Serret formula of v. The unit vector fields 7', N and B are called the
tangent vector field, principal normal vector field and binormal vector field of
v, respectively.

3. Slant curves in almost f-Kenmotsu manifolds

In this section, we consider slant curves in almost f-Kenmotsu manifolds.

Let v be a non-geodesic curve in an almost contact metric 3-manifold M.
Differentiating the formula ¢g(7T',£) = cosf along v with respect to the Levi-
Civita connection V, then it follows that

—0'sin0 = g(kN, &) + g(T,Vré) = kn(N) + fsin® 0 + g(T, heT).
This equation implies the following result.

Proposition 3.1. A Frenet curve v is a slant curve in an almost f-Kenmotsu
manifold M then -y satisfies

1 .
(3.1) n(N) = ——{fsin® 0+ g(v', hpy')}
Using the Frenet frame field {T, N, B}, we express
1
¢ = (cosO)T — =(fsin®0 + g(T, heT))N + n(B)B.
K

Since £ is a unitary vector field, we get

1
B) = —\/k2sin® 0 — (fsin® 0 + b)2.
n(B) K\/n sin (fsin®6+0b)
Hence we get:

Remark 1. For slant curve v the decomposition of £ is

1 1
€ =cosOT — —(fsin® 60+ b)N + (—\/F;2sin29— (fsin?60 + b)2)B,
K K

where b = g(hey', ).
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3.1. The curvature and torsion

We suppose that ~ is non-geodesic slant curve then v can not be an integral
curve of £. In general, we find an orthonormal frame field in almost contact
metric 3-manifold M along ~

/

v costy
|sinf| ° |sinf|

(3:2) eg=T=9, e=

Also &€ = cosfey + |sinf|es. Thus, we put a = g(hy',7"), b = g(hey',') then

b cosd
3.3 hy' = —
(3.3) " ael+|sin9|62 a|sin9|e3
0
(3.4) hey' = ber — alsinf |ea — %(b + acosf)es
From the equation (2.3), we get
co

V&= (b+ fsin®0)e; — a|sind |e — (fsm 0+ b+ acosf)es

|Sl 0

Then we have

1
V.yer = d|siné |es — I 9|(b+fsm 0)es,
(3.5) Vyea = —d|sinf |er + (a + d cosf)es,
Vyes = (b+ fsin?0)e; — (a + 0 cos O)ea,

|sin 6 |

where § = g(Vv',¢7')/sin” 0, a = g(hy',7'), b = g(hey', 7).
From the first equation of (3.5), we get

(3.6) \/ 52 si

From the above equation, we have:

9(b—|—fsm 0)2.

Proposition 3.2. Let v be a slant curve in 3-dimensional almost f-Kenmotsu
manifolds. Then v is a geodesic if and only if v satisfies

9V 97) =0 and  g(hpy',y') + fsin® = 0,
where v is non-parallel to &.

Thus the principal normal vector field N = 1 {§| sinf|e;— Teme] sm9| (b+f sin®0)es}.
Differentiating N and using (3 5) we get

V4N = ——{52 9(b+fsm 0)*Ye,
1
{——5|sm9|+ 5'|sm9|—|— |Sn9|(b+fsm 0)(a+ dcosb)}es
K1 11,
+{1<;2|s1n9|(b+fsm 0) — |sin9|(b + f'sin” 0)
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+ l5| sin® |(a + d cos ) }es.
K

Differentiating (3.6), ' = 1{56’sin® @ + 5 (b + fsin? 0)(b' + f'sin?0)}.
Hence we obtain

(3.7) T = %{6’(1)4— fsin?0) —6(b' + f'sin®0)} + (a + § cosh),

thus binormal vector field B = %{‘51—319‘(1) + fsin?f)es 4 6 | sinf | e3}.

From (3.6) we get § = — \//i? sin? @ — (b + fsin® 0)2. Differentiating (3.6)
we have ¢ = =L {xr'sin*0 — (b+ fsin®0) (V' + f’ sin?)}. Hence we have:
Theorem 3.1. Let v be a non-geodesic slant curve in 3-dimensional almost
f-Kenmotsu manifolds. Then

(38) 1= L {K'(b+ fsin?0) — k(b + f'sin®0)}

Ii\/liQ sin?@ — (b4 fsin®6)2
cosf
sin? 0

where a = g(hy',v") and b= g(hey',v').

\//i? sin?@ — (b+ fsin?0)2 + a,

For a non-geodesic slant curve in f-Kenmotsu manifolds, since a = b = 0,
we have the following

Corollary 3.1 ([6]). Let v be a non-geodesic slant curve with 0 # 0, m such
that N is non-parallel to § in 3-dimensional f-Kenmotsu manifolds. Then its
torsion is:

cos 6 5 o K| sinf | ,
T=——1/K— f2sin® 0 — ————=——=7'(f/K).
|siné | VK2 — f2sin? 6 (/%)

In case f is a non-zero constant, the following statements hold: a non-geodesic
slant curve with constant curvature k has a constant torsion T and so, is a

helix.
3.2. Proper mean curvature vector field

The mean curvature vector field H with respect to the Levi-Civita connection
V of a curve v in 3-dimensional oriented Riemannian 3-manifold is defined by

H = V4 = kN.
Using (2.5), we have:

Lemma 3.1. Let (M, g) be an oriented Riemannian 3-manifold and v a unit
speed curve. Then we have

(3.9) Vo H=—kr*T+ KN + k7B,
(3.10) VoV H = -3ck'T + (K" — k% — kT*)N + (2K'7 + k7') B.
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Definition 3.1. In 3-dimensional oriented Riemannian manifolds M3 , a vector
field X along a unit speed curve 7y is said to be parallel if V., X = 0.

Using the Lemma 3.1, we get:

Proposition 3.3. Let (M, g) be an oriented Riemannian 3-manifold and v a
unit speed curve. Then v has parallel mean curvature vector field if and only if
v 15 a geodesic.

We define the Laplace-Beltrami operator A of v*T'M,
A - 7V'Y/ V'Y/'

For a curve v in an oriented Riemannian 3-manifold M with Levi-Civita
connection V,

AH = -V, V. V..
v has a proper mean curvature vector field if and only if 7 is a helix satisfying
A= K2+ 72
From Theorem 3.1 we have:

Theorem 3.2. A non-geodesic slant curve 7y in 3-dimensional almost f-Ken-
motsu manifolds has proper mean curvature vector field if and only if v is a
heliz satisfying

2 cos? 6 2cosf
% T Fein26)? —
sin? 6 sin49( + fsin”6) sin? 6

(b + f'sin?0)?
k2sin? @ — (b + fsin? 0)2

A=

(b + f'sin? )

2 2y ! 32
+af 'COQS;\/FLQSiDQG—(b-i—fSiIP@)Q - (7 sin 9) }+a’

sm \/,%Q sin? 6 — (b+ f sin” 0)2

For 3-dimensional f-Kenmotsu manifolds, since a = b = 0, we have the
following.

Corollary 3.2 ([6]). A non-geodesic slant curve in 3-dimensional f-Kenmotsu
manifolds has proper mean curvature vector field if and only if v is a helix
satisfying

2 12 o3 29
nQ ~ Peos?0+ f’%sin

)\ = _J v
sin” 0 k2 — f2sin% 0

— 2f" cosb.

Corollary 3.3 ([6]). Let v be a slant curve in the hyperbolic space H3(—1) as
the warped product K3 with constant sectional curvature —1. If vy has proper
mean curvature vector field. Then =y is

—scos 6

v(s)= (s cos 0, sinfe

oo (csin(es) —cos b cos(cs), —ccos(cs) — cos@sin(cs))) ,

where ¢ 18 a constant.
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